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This paper investigates cooperation when information about players’ reputations
spreads to their future partners through network connections. We find that informa-
tion supports cooperation by increasing trust between players, and obtain the ‘radius
of trust’: an endogenous network listing the potentially cooperative relationships be-
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1 Introduction

The extent to which individuals can trust and cooperate with each other in the absence

of formal enforcement has important effects on economic outcomes and has long been a

topic of scholarly interest.1 Trust consists of “placing valued outcomes at risk of others’

malfeasance”(Tilly, 2004), and empirical research on trust often makes use of the standard

survey question: “generally speaking, would you say that most people can be trusted, or

that you can’t be too careful in dealing with people?”

But where does this trust come from? In economic models of bilateral interactions, there

are two main reasons why one person might trust another, even in the face of temptation.

Firstly, because their partner could face punishment for behaving badly, shifting their incen-

tives away from shirking. In this case, if a player knows the expected punishment facing their

partner, they can decide whether to trust them on not depending on whether they think the

punishment is strong enough to incentivise good behaviour. Secondly, their partner’s type

could determine their action: they may be a good type who is immune to temptation — or a

bad type who will always cheat no matter what. In this case, if a player knows his partner’s

type, then he knows whether to trust him or not.

In this paper we build a model which examines both drivers of trust — incentives and

types — and show how each aspect depends on the structure of a communication network

which connects players. These links could depend on many factors: family and kin relation-

ships; friendships or trading relationships; or proximity given by physical geography such as

roads, rivers or the streets of a town. We use a two-sided trust model that allows players

to cooperate in a prisoner’s dilemma game if and only if they both trust each other. Co-

operation is supported by community enforcement, not just retaliation by the victim: other

members of the group will punish a deviator if they find out what he has done.2

In particular, this paper modifies Dixit (2003b)’s model of trade expansion to apply

in a network setting, allowing us to find a ‘cooperation network’ which describes who can

cooperate with whom within a community. This network of cooperation is endogenous to

the communication network — though not a subgraph of it — and the other parameters of

the model, and shows how certain communication network structures can be more or less

1See Coleman (1988); Ostrom (1990); Fukuyama (1996); Putnam et al. (1994); Knack and Keefer (1997);
Leeson (2005); Papaioannou (2013).

2Community enforcement can support cooperation in many settings (Greif, 1993), and its reliance on
information transmission between players has been highlighted by Kandori (1992): “In small communities
where members can observe each other’s behaviour [...] the crux of the matter is information transmission
among the community members.”
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supportive of overall levels of cooperation, and hence lead to higher (or lower) payoffs.

Our model uses Bayesian updating of signals about deviations that travel through the

network. In order to do so, we develop a new measure for the probability of node-to-node

information transmission in networks. This is based on the diffusion approach of Banerjee,

Chandrasekhar, Duflo and Jackson (2013), where diffusion centrality measures the expected

number of times a signal is transmitted between nodes. We modify this measure in order to

find probabilities of information transmission by diffusion, from which we construct a new

measure of centrality — word-of-mouth centrality — which gives the average probability

that a signal emitted by each node will be received by any other node in the network.

Our approach eliminates the double counting of signals in diffusion centrality (Bramoullé

and Genicot, 2018), by using De Morgan’s laws. We also construct versions of this centrality

measure when some nodes do not pass on signals, called obstructed and obstructing centrality.

We find that a pair of players can cooperate if and only if they can both trust each

other not to deviate. In particular, a player is trusted to cooperate if his position in the

network means that other players are able to communicate about him. When trust depends

on incentives, what matters is players’ expectations of the likelihood of detection and hence

punishment. This in turn is linked to obstructing centrality : the average probability that

other players can communicate about someone, if he tries to obstruct the message.

We also identify a second aspect of trust: a player is trusting if his network position

means he is likely to detect deviations by others. When trust depends on a knowledge of

players’ types, payoffs are linked to obstructed centrality, which gives the average probability

that a player will receive messages that have been obstructed by others. Players who have

better knowledge of past play because of their central network position can be more trusting.

We find that both aspects of trust increase with greater probabilities of information

transmission, expanding the number of players who can cooperate, and leading to (weakly)

higher welfare as information flow increases. These two centrality measures, and hence the

two aspects of trust, do not necessarily move together, leading to some surprising results

in certain networks. For example, we might expect the centre of a star to be very trusted,

because everyone can observe him. Not so. In fact we find that for most parameters in a star

network, players on the periphery can cooperate with each other, but the centre is excluded

from cooperation. This is because if the centre deviates, the periphery players cannot inform

each other about his behaviour, because they are completely dependent upon him for their

communication (his obstructing centrality is zero). Hence they cannot trust him not to

deviate. We also find cases where the two aspects of trust are diametrically opposed to
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each other. In a line network, players in the centre of the line cannot be trusted because

those at the two ends of the line cannot communicate with each other about the centre’s

bad behaviour. On the other hand, these central players are very trusting because their

network position means they are highly likely to receive signals about others’ deviations. In

fact, in the line network, those players who are neither in the centre nor the end have the

highest capacity to cooperate, echoing the concept of middle-status conformity (Phillips and

Zuckerman, 2001).3

1.1 Related literature

The important effect of networks in shaping and influencing economic outcomes has long

been emphasised, most recently by Jackson (2008) and Goyal (2007). In particular, there is

now a growing literature examining repeated games where interactions and/or monitoring

are influenced by a network connecting players, surveyed comprehensively by Nava (2016).4

Dixit (2003b) looks at peer enforcement when community members are distant from each

other. He allows distance to affect three things: the probability players meet, the payoffs if

they do, and also the probability they can exchange information. In his model, a continuum

of players are arranged around a circle, and cooperation between pairs of players, who are

matched in the first period of a two-period game, can be supported by punishment in the

final period. A player’s incentive to deviate depends on the probability that a true signal

emitted by the victim of his deviation will be received by other players: his potential future

partners. Dixit finds the ‘size of the trading world’, an arc of the circle which shows the

greatest distance possible between cooperating players, and beyond which they shirk – a

similar concept to Fukuyama’s (2001) ‘radius of trust’. Dixit finds that honesty prevails in a

small enough world, and self-enforcing honesty decreases as size increases. He also compares

community enforcement to global enforcement with different-sized worlds.

In this paper, we modify Dixit’s continuous model of community enforcement in order to

apply it to a network setting with discrete players. To do so we need to specify the process

by which information is transmitted within the network, using new probabilities of node-

to-node information transmission that are based on diffusion (Banerjee et al., 2013, 2014),

3I am grateful to Birger Wernerfelt for suggesting this conceptual link.
4Nava and Piccione (2014) examine the case of local public goods, where a player takes the same action

with respect to each of his neighbours, while Wolitzky (2013) finds a new centrality measure that can
influence a player’s robust maximum contribution to global public goods. Karlan et al. (2009), Breza and
Chandrasekhar (2015) and Annen (2003) investigate the role of network links in supporting commitment in
different settings.

4



D
RA
FT

where information flows through a limited number of links, each link with a decay factor

that represents the probability that two neighbouring players in the information network

pass a signal between them. In our model, the signal denotes a player’s ‘bad reputation’,

which Kandori (1992) shows can ensure that a deviator will be punished by other members

of the community. Players in our setting can fabricate or conceal signals, and one result of

this paper is that unlike the models of Ahn and Suominen (2001); Bloch et al. (2014) and

Annen (2011), our players but do not have incentives to do so.

There are many possible ways information can flow in networks (Borgatti, 2005) and

myriad different information structures have been proposed. Balmaceda and Escobar (2013)

and Raub and Weesie (1990) model information as flowing along one link in the network.

Renault and Tomala (1998) and Wolitzky (2014) let information flow through all the links in

a connected component, finding that the potential for cooperation depends on whether the

network is 2-connected. Lippert and Spagnolo (2011) allow information to travel through

network links with a delay, and highlight the importance of gatekeeping for cooperation,

while in an alternative model with delay Kinateder (2008) finds the diameter of the network

plays an important role. Bloch, Genicot and Ray (2008), Laclau (2014) and Larson (2017a,b)

allow messages to be passed to a subset of players, while in a different setting, Gallo (2014)

models information flow in a network as a random walk process. This paper is, we believe,

the first to model probabilistic information flow in a network.5

The communication network in our model means that different players may have differ-

ent beliefs about past play, depending on the signals they receive from each other through

the network, and so our repeated game falls within the class of games of imperfect private

monitoring (Kandori, 2002; Sekiguchi, 1997; Bhaskar and Obara, 2002; Chen, 2010). Like

Dixit (2003b), our solution concept is perfect Bayesian equilibrium because our players use

Bayesian updating when they receive signals through the network. Our probabilistic infor-

mation flow of signals (not beliefs) allows for Bayesian updating, in contrast to behavioural

approaches often used in networks.6

In common with much of the literature on cooperation, we model pairwise interactions

between players where the stage game is the prisoners’ dilemma, as do Lippert and Spag-

nolo (2011), Ali and Miller (2013), Bloch, Genicot and Ray (2008) and Laclau (2012). In

5Fafchamps (2002) examines probabilistic information transmission for informal enforcement in an in-
finitely repeated game, but without an explicit network structure.

6Degroot (1974); Golub and Jackson (2012). In other settings, Hagenbach and Koessler (2010), Galeotti
et al. (2013) and Acemoglu et al. (2014) also focus on transmission of signals in networks, using the cheap
talk framework of Crawford and Sobel (1982).
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those papers, a network of relationships determines both the interaction possibilities and

the information flows between players. In contrast, we allow interactions and monitoring

relationships to be unrelated to each other, since like Kandori (1992) and Ellison (1994),

we have uniform random matching, which is independent across periods. This means that

players can play the stage game with partners with whom they do not exchange information,

as is the case for Fainmesser (2012) and Fainmesser and Goldberg (2012), although, different

to them, our networks are common knowledge.7

There are two key cooperation-supporting punishment strategies seen most frequently

in the literature: contagion, used by Kandori (1992), Ali and Miller (2013) and Jackson,

Rodriguez-Barraquer and Tan (2012); and grim trigger or ostracism (sometimes with for-

giveness) used by Ahn and Suominen (2001); Raub and Weesie (1990); Larson (2017a,b) and

Ali and Miller (2016). In common with Dixit (2003b), we apply a different approach: a game

of incomplete information and imperfect monitoring, where players behave cooperatively in

order to avoid being mistaken for a bad type whom future partners would ostracise. The

bad type means that this is a game of reputation (Samuelson and Mailath, 2006) where the

punishment has the intuitively-appealing property of renegotiation-proofness (Farrell and

Maskin, 1989; Benoit and Krishna, 1993; Jackson et al., 2012), and also allows us to pin

down expectations off the equilibrium path. In our setting this entails a finitely repeated

game (Benoit and Krishna, 1985), adding a different perspective to much of the literature

where infinite repetition is used.8 This also means that information transmission takes place

within a limited timeframe, for example if a market day is held once per week, information

could only be transmitted between traders for six days, before the next interaction.

The outline of the paper is as follows. Section 2 describes the network connecting players

and probabilities of information diffusion, and Section 3 describes the repeated game of

cooperation. Section 4 describes the equilibrium of interest and the cooperation network.

Section 5 shows how individual levels of trust, cooperation and payoffs depend on network

position, and Section 6 concludes the paper.

7A more general version of the model uses pairwise matching probabilities, defining an interaction network
that shows which pairs of players are likely to meet and play the stage game. This specification allows us to
highlight the importance of two distinct aspects of enforcement: monitoring via the information network;
and sanctioning via the matching probabilities (Ostrom, 1990; Sobel, 2002). It is available from the author
upon request.

8This follows Dixit (2003b) and for example, with a longer time-frame, players may learn the network
positions of the bad types, leading to an unravelling of their important role in the analysis.
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2 The network and information transmission

2.1 The network

There are n players in N = {1, ..., n} who occupy the nodes of a fixed undirected unweighted

network g such that {i, j} ∈ g if i and j are neighbours. A walk of length a between two

nodes i and j in network g is a sequence of nodes (i = x0, x1, ..., xa−1, xa = j) such that for

every r ∈ {1, 2, ..., a}, we have that {xr−1, xr} ∈ g. If the nodes are distinct, the sequence

is a path, and if in addition i = j, it is a cycle. Let G = [gij] be the adjacency matrix of

the network g, where gij = 1 indicates that players i and j are neighbours so {i, j} ∈ g,

and gij = 0 otherwise (and gii = 0 ∀i ∈ N by convention). The network G is common

knowledge; all players know each other’s network positions. Let Ni = {j : gij = 1} be the

set of player i’s neighbours and |Ni| be i’s degree.

As usual, dij(G) is the length of the shortest path between two players i and j in the

network G, which is known as the social distance. Let DG = max{dij(G)} be the diameter

of the network G: the length of the longest shortest path. Two players are connected if

there exists a path of finite length between them, and a network is connected if all players

are connected to each other. If G is not connected, its diameter is infinite. Let G−k be

the adjacency matrix of the network when player k is disconnected: the n × n adjacency

matrix created when all the entries in the kth row and column of G are set to zero; that is,

k remains in the network but is isolated as a singleton. If G−k is connected then the network

is 2-connected with respect to k; the network is 2-connected if it is 2-connected with respect

to all players.

2.2 Information transmission in the network

There are many different ways that information can flow in networks, depending on the

nature of the information and the updating approach used by individuals (Borgatti, 2005).

While Bayesian updating is the standard approach in complete networks, for arbitrary net-

works the inferences become rather complex, and behavioural approaches are often used.9

We tackle this complexity by focusing on the transmission of signals, rather than beliefs.10

9Degroot (1974); Golub and Jackson (2012); Mueller-Frank and Neri (2015); Goyal (2016); Levy and
Razin (2014).

10In other settings, Hagenbach and Koessler (2010), Galeotti et al. (2013) and Acemoglu et al. (2014) also
focus on transmission of signals in networks, using the cheap talk framework of Crawford and Sobel (1982).

7



D
RA
FT

In our model, information flows by diffusion, where a signal passes through each link in

the network with a fixed probability p, up to a maximum number of links T . As defined

by Banerjee, Chandrasekhar, Duflo and Jackson (2013), the parameter p denotes how likely

players are to meet and/or exchange information with their neighbours, and T shows how

many rounds of information transmission there are. For example, if p = 1 and T = 1,

information is passed with certainty only to a player’s direct neighbours.

Definition 2.1. Diffusion (Banerjee et al., 2013) is a process whereby information flows

through the network with adjacency matrix G with probability p ∈ (0, 1] along each link,

up to a maximum T links. The probability of information flowing along each walk in the

network is independent.11 Diffusion centrality is given by di =
[∑T

τ=1(pG)τ1
]
i
.

A player may receive the same signal along different walks in the network, and diffusion

centrality is a sum of the probabilities that a signal is transmitted along each of those walks

between nodes. As such, diffusion centrality measures the expected total number of times

information is transmitted between nodes. It is important to note that this is not the same

as the probability that information is transmitted between nodes, despite its use in empirical

work as an approximation of such (Breza and Chandrasekhar, 2015; Fafchamps and Labonne,

2016; Cruz et al., 2017). The bilateral entries dij = [(pG)τ ]ij are sums of probabilities and

hence are not probabilities themselves, which is evident if they sum to more than one. This

is because of double counting: with diffusion centrality, a signal is counted multiple times

when it is transmitted along different walks in the network.12

This section develops a new closed-form expression for the probabilities of node-to-node

information transmission by diffusion, using De Morgan’s laws to remove the problem of

double counting. This means that we can describe whether or not a signal is received along

these different walks, allowing for Bayesian updating in networks.13

11As pointed out by Bramoullé and Genicot (2018), this independence is implicitly assumed by Banerjee
et al. (2013) and implies that players pass on each signal they receive independently of whether or not they
receive any other signals.

12This problem is related to but distinct from correlation neglect, where players observe the same signal
more than once through different walks in the network and erroneously treat each report as a distinct signal.

13In parallel work, Ambrus, Chandrasekhar and Elliott (2014) and Bramoullé and Genicot (2018) use the
inclusion-exclusion principle to tackle the problem of double counting. In contrast to our simple formula,
these approaches are computationally hard.
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Figure 1: An example network of information transmission
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2.3 Diffusion probabilities

Let Ω denote the information structure of the network such that Ω = {p, T,G}. Let si ∈
{{1}, 6©} be the signal emitted by node i, and ρj ∈ {{1}, 6©} be the signal received by node

j, and wij(Ω) be the probability that a signal emitted by i will reach j by diffusion:

Pr [ρj = 1 | si] =

wij(Ω) if si = 1

0 if si = 6©
∀i, j ∈ N.

We need a way to account for the fact that a pair of players may be connected to each

other by several walks in the network and as such, may transmit a signal via more than

one of these walks. Take for example the network in Figure 1, where we would like to find

w14, the probability that a signal emitted by node 1 will be received by node 4. Let us

set T = 2. There are two walks of length ≤ T along which a signal could pass from 1 to

4: those via nodes 2 and 3. Each are of length 2, so a signal can pass along each of them

with probability p2. Adding these two probabilities together would give the bilateral entry

of diffusion centrality: d14 = p2 + p2. But this does not give the probability that 4 hears a

signal from 1, because we need to take account of the fact that the signal could travel along

both walks. This happens with probability p4, because the probability of information flowing

along each of these walks is independent. So we find that w14 = p2 + p2 − p4.
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For a more general formula, we can invoke De Morgan’s laws of duality. One of De

Morgan’s laws states that for a family of sets A = {Ai; i ∈ I} in the universal set X, where I

is some index set, we have that ∼ (∪i∈IAi) = ∩i∈I(∼ Ai).
14 This means that the complement

of wij(Ω) is given by the probability that j does not hear a signal from i along any of the

walks that connect i and j in G. In other words, for a signal not to travel from i to j, we

need a signal not to travel along every possible walk that connects i to j in G, of length

≤ T . For the example above, we can use De Morgan’s laws to directly obtain the same

result, giving 1 − w14 = (1 − p2)(1 − p2). More generally, we know that for each walk of

length τ , the probability that the signal does not travel along all the links in that walk by

diffusion is 1− pτ .

Definition 2.2. Diffusion probability given by wij(Ω) is the probability that a signal

passes from i to j by diffusion, given in Definition 2.1,. For any Ω, we have that

wij(Ω) = 1−
T∏
τ=1

[1− pτ ]lij(τ,G) .

Where lij(τ,G) = [Gτ ]ij is the number of walks between i and j of length τ in the network

G. This result applies ∀i 6= j ∈ N , while wii(Ω) = 1.

We have assumed that G is symmetric, which means that ingoing and outgoing proba-

bilities are identical. This could be easily modified for a directed network. Let us say that

players can communicate if there is a positive probability that a signal sent by one of them

will be received by the other. Let us also say that a network is informative if every pair of

players in the network can communicate, that is wij(Ω) > 0 ∀i, j ∈ N .

2.3.1 Independence

Definition 2.2 only holds if information flows by diffusion as described in Definition 2.1; in

particular, if the assumption holds that the probability of a signal travelling along each walk

in the network is independent. Let us take this opportunity to reflect on the independence

assumption.15 Consider the network in Figure 1, with node 6 disconnected and T = 3, and

w45, the probability that a signal emitted by node 4 is received by node 5. There are two walks

14With two events and in logic notation, this law can be written as ¬(A ∪ B) = ¬A ∩ ¬B. See Fuente
(2000).

15Bramoullé and Genicot (2018) further examine this independence assumption.
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of length 3 between them: {4, 2, 1, 5} and {4, 3, 1, 5}. With the independence assumption, the

two walks can be treated independently, so we have that w45 = 1−(1−p3)(1−p3) = 2p3−p6.
We can see that node 1 could receive the signal from 4 through two walks, either via

nodes 2 or 3. With independence, he would treat these two signals separately. But a more

accurate specification might be that there would only be one opportunity for 1 to pass this

signal to 5 or not. In this case, w45 = pw41 = p(1− (1− p2)(1− p2)) = 2p3 − p5. This result

can also be found as the probability that the 3 links in each walk are activated separately,

minus the probability that all 5 links in both walks are activated. This would be the kind

of result generated by Banerjee et al. (2013)’s algorithm of communication centrality. This

example shows that there is a small loss in precision due to the independence assumption.

Arguably, this is offset by an easier and quicker computation of the diffusion probabilities

as an approximation of this communication mechanism.

2.3.2 The information structure

The three aspects of the information structure Ω affect the diffusion probabilities as follows.

Proposition 2.1. There are complementarities between the three aspects of the information

structure Ω for the diffusion probabilities given in Definition 2.2. In particular, it holds that

1. wij(Ω) is increasing in p if and only if ∃ τ ≤ T such that lij(τ,G) ≥ 1;

2. wij(Ω) increases as T increases to T + 1 if and only if lij(T + 1,G) ≥ 1; and

3. wij(Ω) increases as a link is added to G if and only if the new link leads to an increase

in lij(τ,G) for any τ ≤ T

An increase in p or T or an additional link in G cannot lead to a decrease in any diffusion

probabilities.

Proof. See Appendix.

Proposition 2.1 shows that, as would be expected, a network with more links, greater

probability of players transmitting messages to their neighbours, and more rounds for infor-

mation to travel, could have higher probabilities of information transmission.
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2.4 Word-of-mouth centrality

We can also construct a centrality measure using these diffusion probabilities. We use the

term word-of-mouth, capturing the intuitive concept whereby information travels within a

community via conversations between players and their connections (Ahn and Suominen,

2001; Lippert and Spagnolo, 2011).

Definition 2.3. Word-of-mouth centrality is the average probability of information

transmission by diffusion for each player in a network and is given by

wi(Ω) =
1

n− 1

∑
j 6=i

wij(Ω) ∀i ∈ N.

There are several related measures of centrality, in particular diffusion centrality and

communication centrality (Banerjee et al., 2013, 2014), Bonacich centrality (Bonacich, 1987),

information centrality (Stephenson and Zelen, 1989), random walk closeness centrality (Noh

and Rieger, 2004), cascade centrality (Teytelboym et al., 2015), and percolation centrality

(Moore and Newman, 2000; Piraveenan et al., 2013) in the epidemiological literature. As

far as we are aware, no measure uses probabilities of information travelling by diffusion

between two nodes. Empirical comparisons — both cardinal and ordinal — between diffusion

centrality and word-of-mouth centrality are given in Appendix A.

The rest of the paper presents an application of these probabilities of information trans-

mission, in a network cooperation game which requires Bayesian updating.

3 The cooperation game

There are n ∈ N players who play a repeated game of cooperation with three periods:

t ∈ {1, 2, 3}, where n > 2 and even. In periods 1 and 3, players are matched in pairs

and play the stage game. In period 2, signals travel stochastically through the network by

diffusion according to Definition 2.1 and information structure Ω = {p, T,G}. This means

there are T sub-periods (or rounds) of information transmission within period 2, and signals

may or may not be received by other players. Hence the cooperation game has imperfect

private monitoring (Piccione, 2002; Fong et al., 2011).

The stage game is the prisoners’ dilemma with exit (Benoit and Krishna, 1985), aug-

mented by an additional ‘dangerous’ action Bi, which is very damaging for a player’s part-

ner: e.g. ‘steal everything’. The action space for each player i ∈ N is Ai = {Ci, Di, Oi, Bi}

12
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where Ci is cooperation and Di is defection, Oi is exit and Bi is the dangerous action. Table

1 shows how payoffs depend on actions.

Cµti Dj Oj Bj

Ci 1 −β 0 −β
Di α σ 0 −β
Oi 0 0 0 0
Bi xi xi xi/2 xi

Table 1: The stage game between i and j. Payoffs are symmetric, and the entries denote
player i’s payoffs.

There are two types of player in the set Ξ = {S-type, B-type}. Most of the players

are strategic or ‘S-type’; but there are a few bad apples — ‘B-types’ — who lurk in the

population. This is a game of incomplete information as players do not observe each other’s

types — as well as imperfect monitoring as mentioned above. The bad type is included in the

game in order to make punishment renegotiation-proof (Samuelson and Mailath, 2006), and

to pin down expectations off the equilibrium path (Dixit, 2003b). These bad or ‘inept’ types

are sometimes called commitment types because they are committed to a certain action. In

our case, we use a simple specification for the payoffs of the bad type.

We assume that xi = −x for S-types and xi = x for B-types, and that x > {β, α} > 1 >

σ > 0 and 2 > α − β. This implies that the dangerous action Bi is strictly dominant for

a B-type and strictly dominated for the S-type. In turn, these assumptions mean that the

stage game between two S-types is the usual prisoners’ dilemma with exit, which has two

Nash equilibria in pure strategies: mutual defection (Di, Dj) or mutual exit (Oi, Oj). For a

game between an S-type player i and a B-type, the only Nash equilibrium is (Oi, Bj).

The proportion of B-types in the population is φ, which is common knowledge. We

assume that φ is low enough that an S-type player will not want to exit against an unknown

player, that is, that

σ(1− φ)− βφ ≥ 0. (3.1)

Let µti denote player i’s partner in periods t ∈ {1, 3}, and µt list the partnerships in

each period, with µ = (µ1, µ3). Players know the identity of their own partner, but not who

anyone else has matched with (as in Kandori (1992)). Players match in pairs according to
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uniform random matching16 where

Pr{µti = j} =
1

n− 1
= Pr{µtj = i} ∀i, j ∈ N and ∀t ∈ {1, 3} (3.2)

3.1 Information in the game

A player k gets a bad reputation (Kandori, 1992), rk = 1, if and only if their partner in

period 1 received a negative stage payoff.17

rk = 1 ⇐⇒ U1
µ1k
< 0 (3.3)

Otherwise, they have rk = 0. So a B-type player will always get a bad reputation, as will an

S-type player who defected against a cooperating partner.

Pr[rk = 1 | {k is B-type}, µ1
k 6= k] = 1 (3.4)

Pr[rk = 1 | {k is S-type}, µ1
k 6= k, Dk, Cµ1k ∈ a

1] = 1 (3.5)

Any player i who was ‘harmed’ by their first-period partner k automatically18 sends a

signal about their partner k’s bad reputation, given by si(k) = 1. That is,

rk = 1 and µ1
k = i =⇒ si(k) = 1 ∀i, k ∈ N. (3.6)

In our model, signals are distinguished only by their subject — the identity of the player

whose bad reputation is being transmitted. The possibility of obstruction or fabrication

provides an action space for the players in period 2 of our cooperation game. There are T

rounds (or sub-periods) of information transmission within period 2. Players decide whether

or not to pass on signals about each of the players, and whether or not to fabricate signals,

in each of the rounds of information transmission. As such the action space for each player

16Dixit (2003b) has different matching probabilities and payoffs that depend on the network. Different
payoffs with different partners which could reflect, for example, complementarities in production with players
who have different skills or resources. These complementarities could be greater with players who are at
greater social distance. A more general version of the model with these additions is available from the author.

17Samuelson and Mailath (2006) show how this separating equilibrium with a bad type is one alternative
for reputational games; the other is a pooling equilibrium with a ‘good type’. See Appendix C.1 for this
alternative in our model. Spence (1973) and Breza and Chandrasekhar (2015) use a specification of the
reputation model where both good and bad signals are emitted.

18This automation is not necessary for later results, it is simply for ease of exposition.
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in period 2 is given by Ψ =
∏

k∈N,τ≤T{{pass on signals about player k in round τ , do

not},{fabricate signals about player k in round τ , do not}}.
Let ρj(k) ∈ {{1}, 6©} be the signal that j receives about k. At the end of the information

transmission period, ρj = (ρj(k))k∈N is player j’s overall ‘network signal’. Player i’s history

(information set) is empty in period 1, and for periods 2 and 3 is given by h2i = (µ1
i , r

i, rµ
1
i )

and h3i = (µ1
i , r

i, rµ
1
i , ρi). That is, at the beginning of period 3 he knows his own and his

period 1 partner’s reputations, and could also receive a network signal about the reputation

of any other player (whom he may or may not match with in period 3).

Let ati ∈ Ai be i’s action in the stage game in period t ∈ {1, 3}, and let at list the actions

in period t. Let ψi ∈ Ψ be i’s action in period 2. Let ci = (a1i , ψi, a
3
i ) be player i’s pure

strategy in the repeated game where ci ∈ Ci = {{a1i , ψi, a3i } | a1i : µ1
i → Ai, ψi : h2i →

Ψ, a3i : {µ3
i , h

3
i } → Ai}. Let the pure strategy space be C =

∏
i∈N Ci and c = (ci)i∈N be a

pure strategy profile of the repeated game.

A player’s payoff in each period of the stage game depends only on his own action and

that of his partner, and is given by Ui(a
t
i, a

t
µti

) for periods t ∈ {1, 3}. Actions in period 2

have no direct payoffs. Players are risk-neutral von Neumann-Morgenstern expected utility

maximisers, with expected utility function ui(·). Given players’ common discount factor

δ ∈ (0, 1], payoffs in the repeated game with strategy profile c and realised matches µ are

given by

ui(c, µ) = Ui(a
1
i , a

1
µ1i

) + δUi(a
3
i , a

3
µ3i

). (3.7)

The repeated game is defined as the tuple:

F ≡ (N,C, (ui)i∈N ,Ξ, φ,Ω).

3.2 Timing of the game

In summary, the order of the game is as follows:

Period 1

• Players are randomly matched for period 1: µ1 is chosen.

• Players choose actions a1 and receive payoffs.

• Players’ reputations are updated, given their partner’s payoffs. Each player i observes

his own and his partner’s reputations ri, rµ
1
i with certainty.
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• For any player i with ri = 1, a signal is emitted by his partner, sµ1i (i) = 1.

Period 2

• Information travels between players in T rounds of stochastic information diffusion;

players choose whether to pass on, conceal or fabricate signals.

Period 3

• Players observe a network signal ρi.

• Players are randomly matched for period 3: µ3 is chosen.

• Players choose actions. a3 and receive payoffs.

4 Equilibrium

We expect there to be many equilibria of this game; like Dixit (2003b), we focus only on

our equilibrium of interest, where cooperation in period 1 can be supported by community

enforcement in period 3. At this equilibrium, actions may not be symmetric — in period

1 some players may be cooperating while others may not — but all players use the same

decision rule for their action choice, a rule that is based on the expected probability of pun-

ishment. We are particularly interested in how many players cooperate at this equilibrium,

and which ones they are with respect to their network position.

This equilibrium has the following structure. In period 1, depending on the network and

other parameters of the game, pairs of S-type players coordinate on either mutual cooperation

or mutual defection. B-type players choose the dangerous action in both periods. In period

3, almost all S-type players defect, except those who have heard a signal about their current

partner. In this case they believe he is a B-type, and choose exit to protect themselves from

harm. Hence, if an S-type player deviates by defecting against a cooperating partner in

period 1, he knows that any player he is matched with in period 3 — if they find out about

his deviation — will choose exit against him, not defection. According to Table 1, mutual

defection gives a strictly positive payoff and exit gives a zero payoff to both players, so a

player could lose out on positive period 3 payoffs if he deviates in period 1. This expected

loss — this punishment — can sustain cooperation.
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To construct this equilibrium, we proceed by backward induction and examine only the

payoffs and decisions of the S-type players. To simplify the notation in this section, let player

i’s partner in period 1 be player j = µ1
i , and his partner in period 3 be player k = µ3

i .

4.1 Periods 2 and 3

In period 3 each player knows his own reputation and that of his period 1 partner, ri and

rj; and his network signal ρi, but he does not know who anyone else matched with or what

transpired in those matches. There are two general possibilities for player i’s history in period

3. If he met another S-type in period 1, he has history (j, ri = 0, rj = 0, ·) since neither of

them deviated. Alternatively i met a B-type in period 1 and has history (j, ri = 0, rj = 1, ·),
since he received a negative payoff at the hands of his partner.

In the conjectured equilibrium, if a player hears a signal about another player, he believes

him to be a B-type with probability one. This means that we can combine (3.5) and (3.6)

to give

Pr[{k is B-type} | ρi(k) = 1] = 1. (4.1)

Remark 4.1. The S-type player’s equilibrium strategy for period 3 is that he exits if and

only if he believes for sure that his partner is a B-type: either having heard a signal about

him or having matched with him in the previous period. Otherwise, he defects.

Proof. Clearly, from Table 1, if i believes k is a B-type, his only rational action is to choose

exit. If i has not heard a signal, the exogenous probability19 that his partner is a B-type is

φ. By (3.1), this possibility of meeting a B-type is low enough that expected payoffs from

choosing defection are positive.

4.1.1 Period 2

In the second round of the game, information is transmitted. Players can pass on reputation

signals, or can choose to obstruct/conceal or fabricate them, all costlessly. We can now

observe the following.

Proposition 4.1. Assume players’ equilibrium strategies in period 3 are as given in Remark

4.1: {exit if you received a signal about your partner, otherwise defect} and signals flow in

19In fact, player i’s subjective updated expected probability of each partner k being a B-type could be lower
than φ, and depends on the network probabilities of information transmission, given in the next Section.
See Appendix C.3.
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period 2 through the network by diffusion given in Definition 2.1. If a player is the subject

of a signal, they strictly prefer to conceal it in all rounds of information transmission. If the

signal is about someone else, players weakly prefer pass it on. All players weakly prefer not

to fabricate signals.

Proof. See Appendix.

In order to characterise the equilibrium, we need to calculate the probabilities of infor-

mation transmission in the network, given that certain nodes will conceal certain messages.

In particular, we want to find a general form of pij(k,Ω), the obstructed diffusion probability

that a signal about player k’s deviation, emitted by player i, will be received by player j.

Pr [ρj(k) = 1 | si(k)] =

pij(k) if si(k) = 1

0 if si(k) = 6©
∀i, j, k ∈ N (4.2)

From Remark 4.1, we know that a player k, and only k, will obstruct this signal. This

means we can modify the probabilities given in Section 2 to take account of obstruction,

by using the network G−k, where k is present in the network but disconnected from his

neighbours, instead of G to calculate the number of walks.20

Definition 4.1. Obstructed diffusion probability given by pij(k,Ω) is the probability

that a signal passes from i to j by obstructed diffusion given in Definition 2.1, when the

signal is obstructed by k. For any Ω, we have that

pij(k,Ω) = Pr[ρj(k) = 1 | si(k) = 1]

= 1−
T∏
τ=1

[1− pτ ]lij(τ,G−k) .

Where lij(τ,G−k) = [Gτ
−k]ij is the number of walks between i and j of length τ in the

network G−k. This result applies ∀i 6= j, k ∈ N , while pii(k,Ω) = 1.

20Recall that G−k is the n×n matrix G with the kth row and column set to zero, because player k is still
present in the network, but will not transmit signals about himself by Proposition 4.1 . The same approach
could be used for more complex obstruction patterns, shown in Appendix C.2. An alternative (and more
computationally onerous) approach to this question is given by Bramoullé and Genicot (2018), who call it
the no retransmission problem.
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Proposition 2.1, which describes the effects of the information structure Ω on diffusion

probabilities, also applies to the case with obstruction, if we replace G with G−k. Since G has

weakly more links than G−k, from Proposition 2.1, we have that wij(Ω) ≥ pij(k,Ω) ∀i, j, k.

4.1.2 Payoffs and centrality

Given this equilibrium strategy, we can now identify the payoffs in period 3.

Proposition 4.2. Let V j
i (k) be the period 3 expected payoffs in the repeated game F for an

S-type player i who met player j, in period 1, did not deviate, and then meets player k 6= j, i

in period 3. Period 3 payoffs are

V j
i (k) = σ(1− φ)− βφ(1−Qj

i (k)). (4.3)

Where Qj
i (k) is the conditional probability that an S-type i, having met another S-type j in

period 1, hears a signal about a deviation by player k, if k is a B-type. If i meets the same

player j 6= i in both periods 1 and 3, payoffs are V j
i (j) = σ if j was an S-type, and zero if j

was a B-type (since i already knows j’s type from meeting him in period 1).

Proof. for V j
i (k) with k /∈ {i, j}, there are two possibilities: either k is a B-type, or he is an

S-type. With probability 1−φ, k is an S-type, and payoffs are σ as the equilibrium strategy

requires both players to defect. With probability φ, k is a B-type, and player i’s strategy

depends on whether he has heard a signal about him, given by Qj
i (k). If i has heard, he will

choose exit with payoff 0. If he has not heard, he will choose defection with payoff −β.

Proposition 4.2 shows how players benefit from being trusting : if there is a higher

probability that they receive a signal about a bad reputation, their expected payoffs are

increased, because they are more likely to have heard if their partner is a B-type and hence

choose exit against him and protect themselves. This is the period of the game where payoffs

depend on a player’s ability to detect types. Here payoffs are increased when a player is more

likely to receive signals.

An interesting centrality measure is players’ obstructed centrality, which describes the

average probability that a player will receive a signal about another player’s deviation, given

that the deviator will try to obstruct the signal about his bad reputation.

Definition 4.2. Obstructed centrality Pi(Ω) is the average probability a player will re-

ceive signals sent by others, when that signal is obstructed by any of the other nodes in the
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network:

Pi(Ω) =
1

(n− 1)2

∑
k 6=i

∑
j 6=i

pij(k,Ω).

.

Proposition 4.3. Period 3 expected payoffs are increasing in obstructed centrality Pi(Ω),

given in Definition 4.2.

Proof. See Appendix

This centrality measure is linked to period 3 payoffs because it shows how a player’s

network position affects the average probability that they receive signals via the network. It

shows, on average, how trusting they are — that is, how easily they can receive signals from

the network about other players.

While we have observed that the B-type will not pass on information about himself, a

player cannot infer anything about his neighbour’s type just because he does not receive any

signal from him. This is due to the stochastic nature of information transmission.21

4.2 Period 1

In this section, we complete our characterisation of the equilibrium by examining conditions

under which we can expect cooperation in Period 1. In our equilibrium of interest, each

potential pair of S-types will coordinate on either mutual cooperation or mutual defection,

depending on their network positions and other parameters of the model. In this subsection,

we identify the particular threshold that players use to decide whether they will cooperate or

defect in their matched pair. As we will show, it depends on the size of the expected losses

that either player could face if they deviated and hence risked punishment. If the expected

losses of both partners are high enough, they both cooperate. If the losses of one or both

partners is too low, the risk of punishment is not great enough to deter deviation, and the

partners will coordinate on mutual defection.

21However, a player can use the structure of the network to update his beliefs about the likelihood of his
period-3 partner being a B-type, given that he did not hear a signal about him. This depends on the network
links between his partner’s possible period 1 matches and himself and is given in Appendix C.3. But these
beliefs would not change his behaviour due to (3.1): he would only choose exit against a certain B-type.
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Consider the case where player i expects his period 1 partner j to cooperate. If i defects

and j cooperates, j will get a negative payoff and send a signal about it, and any S-type

player who receives that signal will exit if they are matched with i in period 3.22

Let V j
i = 1

n−1
∑

k 6=i V
j
i (k) be i’s expected period 3 payoffs over all possible partners k,

given that i met j, another S-type, in period 1. Now we can write player i’s overall expected

payoffs from either cooperating or defecting when his S-type partner j cooperates.23

vi(C
1
i , C

1
j ) = 1 + δV j

i (4.4)

vi(D
1
i , C

1
j ) = α +

δ

n− 1

∑
k 6=i

[
σ(1− φ)(1− pjk(i))− βφ(1−Qj

i (k))
]

(4.5)

= α + δV j
i −

δσ(1− φ)

n− 1

∑
k 6=i

pjk(i) (4.6)

As shown in (4.6), the expected losses that i incurs if he defects against his partner j,

who he expects to cooperate, are δσ(1−φ) 1
n−1

∑
k 6=i pjk(i), which is broken down as follows.

• The payoff from mutual defection in period 3 is σ (the ‘reward’ for cooperation);

• He will only be punished if his future partner is an S-type, which happens with prob-

ability (1− φ);

• Punishment occurs if a signal emitted by j about i reaches his potential future partners

k ∈ N \ i, the probability of which is given by pjk(i). This is weighted by 1
n−1 , the

probability of the match;

• This is summed over all k 6= i potential matches.

• Meanwhile if he matches with j again, payoffs are also zero as j knows for sure about

his deviation because pjj(i) = 1.

Cooperation requires vi(C
1
i , C

1
j ) ≥ vi(D

1
i , C

1
j ). We can rearrange (4.4) and (4.6) to find

that cooperation for i, when matched with a partner j who he expects to cooperate, requires

22Note that meeting a B-type in period 1 does not impact a player’s incentive for cooperation, because he
cannot impose a negative payoff on a B-type, and hence cannot get a bad reputation from deviating against
him. Hence we can exclude the possibility of meeting a B-type in period 1 from our study of the equilibrium
incentives for cooperation. In this case his payoffs are −β + 1

n−1
∑

k 6=i,j V
j
i (k), which enters the expression

for overall payoffs given later in Proposition 4.6.
23By (3.1), players will not exit against an unknown player in period 1: they either cooperate or defect.
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expected losses Lji from deviation to be above a threshold L∗, where

Lji ≡
δσ(1− φ)

n− 1

∑
k 6=i

pjk(i) ≥
α− 1

δ
≡ L∗. (4.7)

We can say that if Lji ≥ L∗, then player i is trusted by player j. This is because player

i has an incentive such that if he expects player j to cooperate, player i will also cooperate.

We can observe that a player’s propensity to cooperate is weakly increasing in his own losses.

Higher expected losses from a deviation are to a player’s advantage because they give him

an incentive to be honest. If losses are high enough, he is more likely to be trusted, and

therefore more likely to take part in cooperation, with higher payoffs.

In particular, i’s expected losses from defecting against j are strictly increasing in the

probabilities that j can inform other players — i’s potential future matches — about a

deviation by i. Player i is more willing to cooperate with j, if j is better able to inform other

players about i’s bad behaviour. This implies that it is better for incentive-based trust if

players can talk about each other.24 The extent to which they can depends on the network

structure and in fact, because of obstruction, on the network structure that remains when

any given node is disconnected. This is because it is not incentive compatible to pass on a

signal about one’s own deviation, and players are unable to commit to do so, and so they

have to rely on others to do so, incentivising a potential deviator with their threat of gossip.

Another centrality is measure is players’ obstructing centrality, which describes the aver-

age probability that other players can communicate, if that player obstructs all their signals.

Definition 4.3. A node’s obstructing centrality Ok(Ω) is the average probability other

players can communicate if node k obstructs the signals they send:

Ok(Ω) =
1

(n− 1)2

∑
i 6=k

∑
j 6=i

pij(k,Ω).

Proposition 4.4. In period 1, whether players are trusted or not is linked to their obstructing

centrality given in Definition 4.3.

Proof. We can rearrange (4.7) to give the following threshold requirement

1

n− 1

∑
k 6=i

pjk(i) ≥
(α− 1)

δσ(1− φ)
. (4.8)

24Larson (2017a) finds a similar result in a different setting.
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Taking the average expected loss over all potential period 1 partners j,

1

(n− 1)2

∑
j 6=i

∑
k 6=i

pjk(i) ≥
(α− 1)

δσ(1− φ)
. (4.9)

Which we can observe is the same as obstructing centrality.

This shows us that the extent to which a player is trusted depends on their obstructing

centrality — that is, how easily other players can communicate about them, when they

cannot commit to pass information on about themselves.

The probability of detection and punishment play the key role in this period of the

model. When the probability of punishment matters, a player wants others to be able to

communicate about him, encouraging him to cooperate. In contrast, in period 3, players

want to be able to communicate about others, in order to get information who may harm

them.

4.3 Equilibrium

We have noted that if a player’s expected losses are less than L∗, he would defect. But if

one player in a pair is tempted to defect, knowing this, their partner will defect too, even if

their losses would otherwise be high enough to deter a deviation. So we need both partners

in a pair to have high enough expected losses for cooperation to occur: they must both be

trusted by each other. Otherwise, they both defect, coordinating on a Nash equilibrium of

the one-shot game and both avoiding the bad reputation.25

Proposition 4.5. A perfect Bayesian equilibrium in the repeated game F for all S-type

players i ∈ N is given by the following equilibrium strategy:

Period 1 Player i cooperates with his partner j if and only if his expected losses from de-

viation are above a threshold value, that is Lji ≥ L∗, and this is also the case for his

partner so that Lij ≥ L∗. Otherwise, he defects.

Period 2 Player i passes on signals about other players k 6= i, but does not pass on signals

about himself.

25It would be possible to apply this model to a one-sided trust game rather than a two-sided cooperation
(prisoners’ dilemma) game, and from that build a directed trust network that shows which players would
trust each other in the one-sided game.
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Period 3 Player i exits against his partner k if and only if he believes that he is a B-type:

either having heard a signal about him or having matched with him in the previous

period. Otherwise, he defects.

Proof. For Period 1, if Lji ≥ L∗ and i expects j to cooperate, then i will also cooperate

due to (4.7). Similarly if Lij ≥ L∗, and j expects i to cooperate, j will also cooperate. In

contrast, if Lji ≥ L∗ but i expects j to defect (which he would if Lij < L∗), then i will also

defect because σ > −β. Equally if Lji ≥ L∗ but Lji < L∗, both players defect. They also

both defect if Lji < L∗ and Lij < L∗. Hence both players in a pair will cooperate if and only

if both players have losses above the threshold. For periods 2 and 3, see Proposition 4.1 and

Remark 4.1.

If there were no B-types, this equilibrium would be subgame perfect Nash equilibrium

(Benoit and Krishna, 1985), but the B-types ensure that the punishment is renegotiation-

proof.26 The equilibrium concept is perfect Bayesian equilibrium, because players update

their beliefs about their partner’s type according to the signal(s) they receive and Bayes’

rule. That is, if there is a unilateral deviation and another player hears about it, he believes

the deviator is a B-type, because he does not expect an S-type to deviate. Hence the B-types

also allow us to pin down expectations off the equilibrium path.27

4.3.1 Welfare and the cooperation network

These equilibrium conditions mean that for any parameters of the model, we can find out

which players can cooperate with each other, and which ones cannot. We list these cooper-

ative pairs as the cooperation network, Gc, which is endogenous to the information network

G and the other parameters. Individual payoffs in period 1 depend on the number of co-

operative relationships each player has: that is, their degree (number of neighbours) in the

cooperation network. Hence welfare depends on the ‘size of the trading world’ (Dixit, 2003b)

— which in our network case refers the number of edges in Gc.

26An equilibrium strategy is renegotiation-proof when a Pareto-dominating Nash equilibrium of the stage
game does not exist (Farrell and Maskin, 1989; Benoit and Krishna, 1993; Jackson et al., 2012). In our
case, players believe any deviator is a B-type, and so the optimal action is exit. If instead, players faced a
deviator who was a known S-type, it would be in both players’ interests to forgo punishment and switch to
the alternative — and Pareto-dominating — Nash equilibrium of mutual defection.

27Without the B-types, players would not expect anyone to deviate. In this case, if they did hear about a
deviation, their beliefs are not clearly specified.
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Proposition 4.6. The cooperation network Gc = [gcij]ij is given by

gcij = gcji =

1, if Lji ≥ L∗ and Lij ≥ L∗

0, otherwise
.

and overall expected payoffs in the repeated game F are given by

vi =
1

n− 1

∑
j 6=i

[
(1− φ)(gcij + (1− gcij)σ)− φβ + δV j

i

]
.

Proof. This follows from (4.3) and (4.4).

Using this result, we can identify a link between information and cooperation in our model.

Proposition 4.7. Trust, cooperation and welfare are weakly increasing in the probabilities

of information transmission.

Proof. See Appendix.

The observation that more information supports cooperation and welfare is intuitive, and

supports Kandori’s (1992) assertion that information about a player’s reputation can sustain

cooperation within a community. It also echoes results from imperfect private monitoring

in infinitely repeated games by Sekiguchi (1997) and Bhaskar and Obara (2002) where,

providing that monitoring is sufficiently accurate, the symmetric efficient payoff can be

approximated. Experimental evidence such as that by Gallo and Yan (2015) also finds that

information plays an important role in supporting cooperation.

5 Trust, visibility and obstruction

Having shown that a network which supports greater information transmission can support

more cooperation, next we analyse the effect of different network positions on individual

levels of trust, cooperation and payoffs. We identified two aspects of trust — players are

trusted if other players can send and receive signals about them, whereas they are trusting if

they are likely to receive signals about other players. We have linked these aspects of trust

to two centrality measures, and next we examine in more detail how network positions relate

to these two aspects of trust.
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5.1 Visibility

We have shown that if player i emits a signal that is obstructed by player k, the probabilities

that the signal is received by other nodes are determined by player i’s position in G−k, the

network where k is disconnected. We now define the concept of visibility in networks.

Definition 5.1. A node is visible if and only if everyone can still communicate, even when

he is obstructing the signal. That is, player k is visible iff pij(k,Ω) > 0 ∀ i, j ∈ N \ k.

Visibility depends on what the network looks like when a node is disconnected i.e. the

structure of G−k. It requires two things for k to be visible. First, G−k must be connected,

because a visible player does not disconnect the network by his absence, i.e. if G−k is

connected then G is 2-connected with respect to k. For example, in a tree network, only the

leaf nodes are visible because every other player is needed to connect the network. Secondly,

the diameter of G−k must be not be greater than T , the maximum distance a signal can

travel.28

Remark 5.1. It holds that:

• For i, j such that dij(G−k) ≤ T , we have that pij(k,Ω) ≥ pdij(G−k) > 0

• For i, j such that dij(G−k) > T , we have that pij(k,Ω) = 0

This implies that:

• If G−k is connected and DG−k ≤ T , then pij(k,Ω) ≥ pDG−k > 0 ∀i, j and player k is

visible.

• If the network is 2-connected and maxk∈N{DG−k} ≤ T , all nodes are visible.

• If, in addition, p = 1, then pij(k,Ω) = 1 ∀ i, j, k, and there is perfect information.

• If G−k is not connected, then ∀i ∃ j such that pij(k,Ω) = 0

Only a visible player has a positive probability that everyone could find out if he deviates

against any of his matches, and hence could potentially risk all of his period 3 losses by

deviating. So a lack of visibility reduces a player’s potential losses, and hence his likelihood

28This implies 2-connectedness because a network with a finite diameter is connected.
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Figure 2: A star network (L) and its corresponding cooperation network (R)

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

of cooperation. The link between player i’s visibility and the connectedness of G−i echoes the

importance of 2-connectedness for cooperation that is highlighted by Renault and Tomala

(1998) and Wolitzky (2014), because 2-connectedness is clearly a necessary condition for

visibility. Like Kinateder (2008), we also find that the diameter of the network is important

for cooperation, although in our case — because of obstruction — it is the diameter of

the network that remains when a player is disconnected that matters. In fact, a sufficient

condition for player i’s visibility is that DG−i ≤ T .

5.2 Example: star network

The concept of visibility sheds light on tree networks and in particular the star network,

which is a canonical structure within the class of core-periphery networks (Hojman and

Szeidl, 2008).

Remark 5.2. For a given number of nodes in a connected information network that is

informative and a tree, the star network has the most visible nodes of any tree configuration.

Proof. See Appendix.

We can illustrate the importance of 2-connectedness with an example information net-

work: the star network, shown on the left of Figure 2 with eight players.29 The star network

29Parameters for all examples are: α = 1.15, δ = 0.95, β = 1.3, σ = 0.5. We set T = 6, for the example

27



D
RA
FT

Figure 3: Expected losses and threshold losses in star network with eight nodes

is not 2-connected with respect to the centre because without him, all other players — the

periphery — are singletons. On the other hand, the network is 2-connected with respect

to the periphery players because they would not disconnect the network by their absence.

Since the star network is not 2-connected with respect to all nodes, it is not 2-connected.

The cooperation network is shown on the right of Figure 2 (p = 0.5). Perhaps surprisingly,

we observe that the player in the centre of the star cannot cooperate with any other player,

while the players on the periphery can all cooperate with each other. To find out why, we

can look at the losses in each partnership, shown in Figure 3. The solid line denotes the

threshold losses L∗ that must be attained by both players in a match to ensure cooperation.

The circles show player 2’s losses from defecting in each of his partnerships, and the asterisks

of a weekly market day, which would have 6 intervening days during which information flows through the
information network before the next market day. Banerjee et al. (2013) ”set T to the number of trimesters
during which the village was exposed to [intervention] (6.6 on average).
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show his partners’ losses.

We can see that player 1, in the centre of the star, can trust player 2 on the periphery.

This is because 2’s losses from a deviation against 1 are high, since a signal emitted by 1

about 2’s deviation only has to travel one link to be received by the other periphery players

— 2’s potential future partners. But 2 cannot trust 1 in return, because 1’s losses when

matched with 2 are below the threshold line L∗. This is because if 1 were to deviate against

2, player 1 would obstruct any signal 2 would send about it — and without 1, player 2 is

a singleton and so could not tell anyone. So 2 expects 1 to defect and therefore will also

defect, and cooperation breaks down between them. This structure recalls the gatekeeping

and end network effects highlighted by Lippert and Spagnolo (2011), because player 1 acts

like a ‘gatekeeper’ of the information network with respect to the periphery players. 30

On the other hand, as shown in the chart, periphery players have relatively high losses

when matched with each other, and these are symmetric, so they can all cooperate with

each other. This is because player 1 in the centre of the star provides a walk of length two

between all the periphery players, so a signal is very likely to pass between them if any of

them deviate, leading to high losses and therefore more trust. The centre of the star misses

out on cooperation himself, but supports cooperation by the other players, by ensuring they

can communicate with each other.

5.3 Obstructiveness

A comparison between diffusion probabilities and obstructed diffusion probabilities gives us

a measure of the effect of each player’s obstruction.

Definition 5.2. A node is obstructive if and only if his obstruction means that two or more

nodes who could previously communicate no longer can. That is, player k is obstructive iff

∃ i, j ∈ N such that wij(Ω) > 0 and pij(k,Ω) = 0.

Obstruction is linked to social distance, because player k is not obstructive if for all {i, j}
with dij(G) ≤ T we also have that dij(G−k) ≤ T . That is to say, player k is not obstructive

if he does not increase the social distances too much by his absence from the information

network. We collect the conditions for obstructiveness in the following Remark, highlighting

the link between obstructiveness and the length of the cycles that include a player.

30In fact, the periphery nodes could cooperate with the centre if they had additional links to each other.
This recalls Myerson’s (2008) model of an autocrat whose support depends on the ability of his ‘courtiers’
to observe his behaviour towards each of them, ensuring fairness.
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Figure 4: Player k cannot be obstructive in a cycle of length 4 (L), but can be in a cycle
length of 5 (R)
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Remark 5.3. If k has only one neighbour, k is not obstructive. If k has more than one

neighbour, then k is not obstructive if and only if the following. For each pair of nodes l,m

with dlm(G) ≤ T and for whom the sequence (i, k, j) is part of the shortest path(s) between

them (implying that i, j ∈ Nk), we require that dlm(G) − 2 + dij(G−k) ≤ T , or equivalently

that there exists a cycle in G including the sequence (i, k, j) with length ≤ T + 4− dlm(G).

More generally, if a player k has more than one neighbour, a sufficient condition for him

not to be obstructive is if, for each pair of k’s neighbours i, j ∈ Nk, there is a cycle of length

≤ 4 including the sequence (i, k, j). This implies that for all l,m ∈ N who have the sequence

(i, k, j) as part of the shortest path(s) between them, we have that dlm(G−k) = dlm(G).

Figure 4 shows an example of this result. In both networks in the Figure, G is made up of

all the solid and dashed links, while G−k includes only the solid links. In the network on the

left, k is in a cycle of four in network G, and dlm(G) = 4. If node k is disconnected, and we

examine G−k, then the social distance between l and m is unchanged — it remains 4. This

is because there is an alternative route between l and m via node o. Node o is connected to

k’s neighbours i and j, so any other walks in a wider network which include the sequence

{i, k, j} could instead include the sequence {i, o, j}, which is the same length. So if k is in a

cycle of length 4, his removal from the network does not increase the social distances of any

other pairs of nodes. So k cannot be obstructive, no matter what the value of T is. On the

other hand, the network on the right shows a case where k could be obstructive, depending

on the value of T. Now in G−k, because of node q, the social distance between l and m has

increased to 5 links, whereas before when k was present it was only 4. So if T = 4, with k

passing on signals in the network it would be possible for l and m to communicate. Without
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Figure 5: A line network (L) and its corresponding cooperation network (R)
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him, they cannot: k is obstructive.

The length of the cycle determines whether or not k’s neighbours can still communicate,

even when k is obstructing those signals. The importance of cycles of length four, our

sufficient condition for a player not to be obstructive, recalls well-known results on the

importance of network cycles of length three: Coleman’s (1988) closure; and Jackson et al.’s

(2012) support.

Proposition 5.1. Player k is visible if and only if the network is informative (wij(Ω) >

0 ∀i, j ∈ N) and player k is not obstructive.

Proof. See Appendix.

Proposition 5.1 shows that there are two possible reasons why a player may not be visible:

firstly, if the network is not informative, so that even without obstruction some nodes cannot

communicate; and secondly, if the network is informative but a player is obstructive, in that

he can prevent some nodes from communicating if he does not pass signals.

5.4 Example: line network

We can illustrate the links between payoffs and the different centrality measures using the

line network of eight players, shown on the left of Figure 5. The cooperation network with

uniform random matching is shown on the right, and payoffs and centralites are shown in

Figure 6. Obstructed centrality increases for those players located nearer to the centre of the

31



D
RA
FT

Figure 6: Payoffs and centrality in a line network with eight nodes
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line. As expected from Proposition 4.3, period 3 payoffs rise monotonically with obstructed

centrality, because players who are more likely to receive information from the network —

even if it has been obstructed by others — are more trusting.

On the other hand, there is a non-monotonic relationship between period 1 payoffs and

centralities. The chart in Figure 6 shows that players 2, 3, 6 and 7 have the highest coop-

eration levels in equilibrium, but only moderate levels of either type of centrality. Looking

at the cooperation network, we can see the same pattern: players 1 and 8 are not able to

cooperate with anyone, and players 4 and 5 have fewer links in the cooperation network than

players 2, 3, 6 and 7. This non-monotonic relationship between centrality ranking and coop-

eration is similar to a concept known as middle-status conformity, identified by sociologists

Phillips and Zuckerman (2001), where those with a ‘middle’ level of status or ranking are

most likely to conform to society’s norms. In another setting, Butler et al. (2009) also find

a non-monotonic relationship between payoffs and trust.

5.4.1 A counterfactual without obstruction

We can use diffusion probabilities — without obstruction — as a useful counterfactual to

investigate the effect of obstruction on cooperation in this network. These allow us to con-

struct counterfactual expected losses without obstruction, and a counterfactual cooperation

network, showing which players would cooperate, were it not for obstruction. This hypo-

thetical network (not shown) includes additional cooperative links between players: 4 with

2, 3 and 5; and 5 with 4, 6 and 7.

This means that the losses without obstruction for the partners of players 1 and 8 are still

too low to deter defection; we say that 1 and 8 have poor network positions in an absolute

sense because they are too ‘tempting’ for anyone to cooperate with, even if the deviator could

not obstruct their signals: they can trust no-one. On the other hand, we find that 4 and 5

have three more cooperative links in the counterfactual network; in fact the non-monotonic

relationship between cooperation and obstructed centrality disappears when we remove the

effect of obstruction. We say that 4 and 5 have poor relative network positions because they

would have cooperated, were it not for their own obstruction of signals. Players with poor

network positions in either sense reduce cooperation levels and hence welfare.

This also gives us an insight into the non-monotonic pattern of cooperation shown above.

The temptation to cheat against poorly-connected players is high. The temptation to cheat

by well-connected — but obstructive — players is also high. Partnerships that involve these

two types of players are less likely to support cooperation because the temptation is to cheat
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is too great on one or both sides. Pairs of players whose network positions are neither too

isolated nor too obstructive have the greatest incentives for honesty.

6 Conclusion

This paper investigates the extent of cooperation in a finitely repeated game in a network

setting. We apply Dixit (2003b)’s continuous model to a network: a discrete community

of players who occupy its nodes. The players are randomly matched in pairs in the first

and last periods, and play the stage game of a modified prisoners’ dilemma. From the fixed

information network, the model allows us to generate an endogenous network of potentially

cooperative relationships. From this we can characterise how levels of cooperation depend on

the structure of the information network. Individual players’ payoffs are linked to whether

their network positions mean they are trusting and/or trusted. Players are trusting if they

are likely to receive information from the network, while they are trusted if others can

pass signals about them. A pair of players can only cooperate if they are both trusted by

each other. We find that cooperation and welfare both increase with more information.

To operationalise the model which requires Bayesian updating, we develop a new, simple

method for finding the probabilities of node-to-node information transmission in networks,

which eliminates the problem of double counting.

We find that players with higher obstructed centrality (constructed from the probabil-

ities of information transmission) receive more information from the network, even when

others obstruct the signals, and hence are more trusting. But there can be a non-monotonic

relationship between centrality measures and the extent to which players are trusted, which

depends on their risk of punishment, leading to cooperation patterns with middle-status

conformity. This is interesting because one might expect the most central player to have

the highest payoffs, while we find that a player’s central position may actually reduce his

capacity to be trusted by others, for example in the star network. This is because players

cannot commit to pass on a signal about their own bad reputation. Knowing this, players

who rely on a central player for information transmission may not trust him, because they

know he will obstruct any signal that they send to warn others about his bad reputation.

This highlights the importance of 2-connectedness and cycles for cooperation and welfare,

because these structures ensure that players are unable to completely obstruct signals about

their reputations travelling between other players. Since the non-monotonic relationship be-

tween cooperation and centrality disappears in our counterfactual example of a line network
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without obstruction, we conjecture (though we have no formal proof) that general results

may exist linking middle-status conformity to line networks, or other acyclic networks.

The possible link between middle-status conformity and acyclic networks may also be of

empirical interest. There is some experimental evidence that players with high centrality may

be less ‘reciprocal’ in trust games (Riyanto and Yeo, 2014; Barr et al., 2009). Obstruction

may also imply that acyclic networks are less likely to be observed in communities that use

this kind of community enforcement mechanism. Where acyclic networks are present, we may

find that central individuals seek other ways to dampen the negative effect of obstruction on

their capacity to cooperate. For example, they may enlist their own neighbours (not just the

neighbours of their potential victim) as witnesses to observe their actions, increasing their

potential losses and making them more trusted. Secondly, obstructive, bridging players

may specialise in information transmission: even though they cannot pass signals about

themselves and are hence not trusted, they could share in the benefits of cooperation if

transfers from other cooperating parties can be arranged. Finally, local matching may have

a mitigating effect because if someone is more likely to meet the same player again, he will

have higher losses from deviating against them, even if that player cannot communicate with

others due to obstruction.

Some interesting extensions suggest themselves. The model focusses on the case of a

bad reputation, and it may be interesting to fully characterise the case with a ‘good label’

(discussed in Appendix C.1), or both good and bad signals, as in Spence (1973) and Breza

and Chandrasekhar (2015). It could also be interesting to introduce some stochasticity in

payoffs in order to investigate the effect of risk on cooperative relationships, as observed by

Baker (1984). It may be possible to use the model to investigate the interaction of formal

and informal enforcement regimes, as examined by Kranton (1996), Dhillon and Rigolini

(2011) and Dixit (2003a). Finally, the model might be useful in examining the relationships

between prosocial behaviour and group size (Dixit, 2003b; Ostrom, 1990; Allcott et al., 2007;

Larson, 2017b) or social distance (Chandrasekhar et al., 2014; Karlan et al., 2015).
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A Word-of-mouth centrality and diffusion centrality

As described in Section 2, word-of-mouth centrality uses average probabilities of information

transmission by diffusion to rank the nodes in a network. In contrast, diffusion centrality

describes the expected number of times information is transmitted, but has often been used

as an empirical approximation of these probabilities. This section examines the relationship

between the two measures in more detail.

Banerjee et al. (2013) set out the structure for information transmission by diffusion in

fixed networks. They empirically investigate the effects of information in social networks on

the decisions of individuals to take up a microfinance opportunity in villages in India. They

develop diffusion centrality as an approximation of communication centrality, a simulated

measure linked to the Susceptible, Infected, Recovered model (Kermack and McKendrick,

1927; Bailey, 1957), which runs for a finite period of time and allows for non-participants

to pass on the message. They find that diffusion centrality has a 0.86 correlation with com-

munication centrality. It is given by di =
[∑T

τ=1(pG)τ1
]
i

where p is equal to the inverse

of the largest eigenvalue of the adjacency matrix, λmax(G). Banerjee et al. (2013) choose

this critical value of 1/λmax(G) because “the entries of [pG]T tend to 0 as T grows if

p < 1/λmax(G), and some entries diverge if p > 1/λmax(G)”. As T tends to infinity, diffu-

sion centrality becomes proportional to either Bonacich centrality or eigenvector centrality,

depending on whether p is smaller or larger than 1/λmax(G), respectively.

As we showed in Section 2.2, diffusion centrality does not take account of double counting,

measuring instead the total amount of information travelling between nodes in a network.

Of course there are many cases when the amount of information transmitted matters, and

diffusion centrality has been found to have empirical relevance (Breza and Chandrasekhar,

2015; Fafchamps and Labonne, 2016). But if used to approximate a probability, it could

overemphasise the benefit of hearing a lot of information, because at some point extra infor-

mation may be redundant, if these signals are likely to have already been received via other

walks in the network.

The diffusion probabilities presented in this paper eliminate this double counting, and

may be easier to work with in an empirical context for two reasons, as shown in this section.

First, they lie between zero and one, and so no transformation is required to approximate a

probability. Second, they can be calculated for any value of the probability that two neigh-

bours talk, not just when p = 1/λmax(G). Third, in contrast to diffusion centrality, their

relative rankings are affected by the parameter T on the length of information transmission.
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Figure 7: Comparing centrality measures in a village.
Link-level probability p = 1/λmax(G) = 0.06 (L), and p = 0.15 (R)

The next subsections compare word-of-mouth and diffusion centrality in both cardinal and

ordinal terms.

A.1 Cardinal comparison

Figure 7 compares diffusion centrality and word-of-mouth centrality, using data from one

of the Indian villages studied by Banerjee et al. (2013). Centralities are calculated at the

household level.31 The value of p = 1/λmax(G) is used to compare the two centralities in the

left chart, and there is clearly a strong relationship between the two measures. In fact, at

31Village number 1; n = 182. For this comparison we use wi = 1
n

∑
j∈N wij (i.e. not excluding wii

compared to the formula in Definition 2.3). This makes it more comparable with diffusion centrality, which
includes the diagonal entries of the matrix in its sum.
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a b c d

Figure 8: A network of 12 nodes, 4 positions

this value of p, a linear transformation of diffusion centrality would be a good approximation

of word-of-mouth centrality, and this approach is used by Breza and Chandrasekhar (2015).

The chart suggests a transformation factor of 0.06 in this case.

The chart on the right shows the comparison between the two measures when we use a

larger p, and while ranking seems to be generally preserved in this case, there is some diver-

gence in the relative magnitude of the measures, as the word-of-mouth centralities converge

towards 1. So if there is any empirical reason to suspect that p differs from 1/λmax(G),

a linear transformation of diffusion centrality may no longer be a good approximation of

diffusion probabilities, and the word-of-mouth centrality approach may increase accuracy..

In particular, we can observe that the level of inequality in diffusion centrality between the

nodes in a network is higher than when word-of-mouth centrality is used. This is because

central nodes who receive a lot of information have extremely high values of diffusion cen-

trality. But with word-of-mouth centrality, the effect of this extra information is discounted,

due to the fact that it is probably redundant. Central nodes have probably received the

signal via other walks already. This analysis suggests that if p is higher than the standard

level, diffusion centrality could overemphasise the benefit of a central network position in

relation to information transmission.

A.2 Ordinal comparison

We have shown that the relative levels of the two centrality measures can differ. In this

section, we present an example network, shown in Figure 8, where the ranking of the central-

ities differs between diffusion and word-of-mouth. Figure 9 shows how the word-of-mouth

centralities for this network change as T increases (with p = 0.34 — just slightly above

1/λmax(G) = 0.32). We can observe that:

• Word-of-mouth centrality converges to an upper bound which is less than 1, whereas

diffusion centrality grows beyond that; and
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Figure 9: Comparing centrality measures as T increases

• The relative rankings of the two centralities are the same when T is low (less than 5),

but after this point the rankings in word-of-mouth centrality switch around.

This switch may be due to the fact that, at low T, short walks are more important, and

node positions a and b are most central. When T is higher, longer walks are also feasible

and now nodes d overtakes a and c to have the second highest centrality. This change is not

observable with diffusion centrality, perhaps because the summation formula does not allow

for these differences to have an impact. With word-of-mouth centrality, rankings depend on

the parameters p and T , and these parameters could be empirically observable.

This section has shown that there could be important differences in both ordering and

relative levels if either diffusion centrality or word-of-mouth centrality are used.
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B Proofs

B.1 Proof of Proposition 2.1

Diffusion probabilities and the information structure Ω.

1. Increasing p: We have that
∂wij(p,T,G)

∂p
≥ 0 with a strict inequality if and only if

lij(τ,G) > 0 for any τ ≤ T , that is, if and only if i and j are connected by one or more

walks of length ≤ T in the network G.

2. Increasing T to T + 1: Let

Fij(p, T,G) = 1− wij(Ω) =
T∏
τ=1

[1− pτ ]lij(τ,G) . (B.1)

If T increases to T + 1, we have that

Fij(p, T + 1,G) = Fij(p, T,G)(1− p(T+1))lij(T+1,G). (B.2)

So Fij(p, T + 1,G) < Fij(p, T,G) if and only if lij(T + 1,G) ≥ 1; otherwise they are

equal. The same argument holds for any further increases in T . Hence Fij(Ω) is weakly

monotonically decreasing in T and so wij(Ω) is weakly monotonically increasing in T .

3. Adding a link to the information network: Suppose that we add a link to the

network G, creating the network G′, which has an additional walk of length τ between

i and j so that lij(τ,G
′) = lij(τ,G)+1. Now we compare Fij(p, T,G

′) and Fij(p, T,G):

Fij(p, T,G
′) = Fij(p, T,G)(1− pτ ). (B.3)

We have that Fij(p, T,G
′) < Fij(p, T,G) as required. Meanwhile any change to the

network that leaves lij(τ) unchanged ∀τ ≤ T leaves the probabilities unchanged.

B.2 Proof of Proposition 4.1

In Definition 2.1 we assumed that the probability of information travelling along each walk

is independent, implying that players only recall signals they receive at the end of a walk,
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and forget signals received and passed on in the intermediate steps of a walk. There are four

cases.

An S-type player and a signal about himself: This S-type player has deviated in period 1.

He will have strictly lower payoffs if his future partner is an S-type and has heard about his

deviation, because they will exit against him instead of defecting. His period 3 payoffs are

unchanged if he meets a B-type (because a B-type would not ‘punish’ him). He could match

with anyone in period 3 and because he does not know which of these players are S-types and

which are B-types, he does not want any of them to find out about his deviation. Therefore

he will strictly prefer to conceal a signal about himself from all other players. This holds for

all rounds of information transmission.

A B-type player and a signal about himself: A B-type’s payoffs are x/2 if his future

partner has heard the signal about the B-type’s period 1 partner’s negative payoff, and x

otherwise, so he strictly prefers to conceal a signal about himself.

An S-type player and a signal about someone else: S-type players are not expecting

another S-type to deviate, so a signal about another player would imply that he is a B-

type. An S-type player who has heard a signal about a B-type player, and meets him in

period 3, has payoff 0. If he has not heard the signal, his payoff on meeting a B-type is

−β. If he meets an S-type, his payoffs are unchanged by hearing a signal about a B-type.

As he could meet any of the players in period 3, an S-type player strictly prefers to receive

a signal about a B-type. Because players forget information after they have passed it on,

and only remember information they receive at the end of its walk, they could increase their

probability of receiving a signal, by passing it on - since this means it might come back to

them.

However it is not the case that passing on a signal always increases the probability that

it is received. Sometimes it may have no effect. For example, passing on a signal in round

T of information transmission cannot increase their probability of receiving the signal back,

because the signal does not have time to return to them. So he is indifferent between passing

on a signal or not in information transmission round T .

But if players do not pass on the signal in round T , they cannot increase their probability

of receiving it by passing it on in round T −1, and so information transmission could quickly

unravel. Specifically, a player can strictly increase his probability of receiving a signal by

passing it on, if and only if other players pass it on in the following rounds, and he is part

of a walk that returns to his network position in a number of links which is a factor of the

number of information transmission rounds remaining. So we can observe that the strategy
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for all S-type players to pass on signals about other players in all rounds is weakly preferred.

A B-type player and a signal about someone else: In this case, a B-type’s payoffs in

period 3 are not affected by whether he has heard a signal about a deviation or not. So he

is indifferent between passing signals about other players and not passing them. Therefore

the strategy to pass on signals about all other players in all rounds is weakly preferred. This

means that in our model a B-type player has the same strategy for passing on signals as

does an S-type. This seems reasonable: a B-type player may not wish to draw attention to

himself by not passing on signals about other players, when it would not decrease his payoffs

to do so.

Fabricating signals: We have assumed that a victim of a negative payoff automatically

emits a signal about his partner’s bad reputation. This is incentive compatible because the

victim is indifferent about emitting this signal, since he will recall who harmed him anyway.

On the other hand, an S-type player does not have incentives to fabricate a report of a

deviation, because if he hears his own false report through the network and believes it, this

could lead him to exit against an S-type player, and hence miss out on positive payoffs. For

a B-type, he also has no incentive to fabricate rumours about other players, since the would

not affect either his future partner’s actions since they would be about someone else, or his

own since these do not depend on his information set. So in our model, players do not have

incentives to lie.

B.3 Proof of Proposition 4.3

We want to show that period 3 payoffs are increasing in obstructed centrality given in

Definition 4.2. Ex ante, i could meet any player k in period 3, and any player j in period

1. So we want to find Vi, the average expected period 3 payoffs over any k and any j, and

check that it is (weakly) increasing in Pi.

Vi =
1

(n− 1)2

∑
k 6=i

∑
j 6=i

V j
i (k)

=
1

(n− 1)2

∑
k 6=i

∑
j 6=i

[
σ(1− φ)− βφ(1−Qj

i (k))
]

= σ(1− φ)− βφ+ βφ
1

(n− 1)2

∑
k 6=i

∑
j 6=i

Qj
i (k) (B.4)
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Qj
i (k) is the conditional probability that, if player k is a B-type, an S-type player i who

matched with another S-type player j in period 1 will hear a signal about player k:

Qj
i (k) ≡ Pr

[
ρi(k) = 1 | {k is B-type}, ri = rj = 0, k, µ1

k /∈ {i, j}
]
.

By the law of total expectations, Qj
i (k) is given by:

Pr
[
ρi(k) = 1 | {k is B-type}, ri = rj = 0, k, µ1

k /∈ {i, j}
]

=
∑
h∈N

[
Pr
[
ρi(k) = 1 | {k is B-type}, ri = rj = 0, k, µ1

k /∈ {i, j}, µ1
k = h

]
Pr
[
µ1
k = h | k, µ1

k /∈ {i, j}
]]
.

The second term is

Pr
[
µ1
k = h | k, µ1

k /∈ {i, j}
]

=
Pr [(µ1

k = h) ∩ (k, µ1
k /∈ {i, j})]

Pr [k, µ1
k /∈ {i, j}]

=


1/(n−1)∑

h 6=i,j 1/(n−1)
= 1

n−2 ∀ h /∈ {i, j}

0 ∀ h ∈ {i, j}
.

The first term is

Pr
[
ρi(k) = 1 | {k is B-type}, ri = rj = 0, k, µ1k /∈ {i, j}, µ1k = h

]
=


0 ∀ k ∈ {i, j}

0 ∀ h ∈ {i, j}

phi(k) otherwise

.

Therefore Qj
i (i) = Qj

i (j) = 0, and otherwise we have that:

Qj
i (k) =

1

n− 2

∑
h6=i,j

phi(k) ∀ k /∈ {i, j}. (B.5)

Let Pi(k) = 1
n−1

∑
h6=i phi(k), noting that 1

n−1
∑

k 6=i Pi(k) = Pi. We can substitute this into

(B.5) to give

Qj
i (k) =

1

n− 2

[∑
h

phi(l)− pji(k)

]
=

1

n− 2
[(n− 1)Pi(k)− pji(k)] .
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Next we take the averages required.

1

(n− 1)2

∑
k 6=i

∑
j 6=i

Qj
i (k) =

1

(n− 1)2

∑
k 6=i

∑
j 6=i

1

n− 2
[(n− 1)Pi(k)− pji(k)]

=
1

(n− 1)(n− 2)

∑
k 6=i

[
(n− 1)Pi(k)− 1

(n− 1)

∑
j 6=i

pji(k)

]

=
1

(n− 2)

[
(n− 1)Pi −

1

(n− 1)2

∑
k 6=i

∑
j 6=i

pji(k)

]

=
1

(n− 2)
[(n− 1)Pi − Pi] = Pi

And therefore from (B.4) we have that ∂Vi
∂Pi

= βφ > 0, as required.

B.4 Proof of Proposition 4.7

The expression for each player’s utility given in Proposition 4.6 is strictly increasing in both

the number of cooperative partnerships, and in period 3 payoffs. From Proposition 4.3, pe-

riod 3 payoffs are increasing in information transmission probabilities. From Proposition 4.5

the number of cooperative partnerships is weakly increasing in the losses in each partner-

ship, and from (4.7) losses are strictly increasing in information transmission probabilities.

Putting these together, overall utility is weakly increasing in the probabilities of informa-

tion transmission. So more information, in the sense of greater probabilities of information

transmission, weakly increases the levels of cooperation and welfare in this repeated game.

Finally, Proposition 2.1 showed that the probabilities of information transmission are weakly

increasing in the three aspects of the information structure Ω = p, T,G.

B.5 Proof of Proposition 5.1

By Remark 5.1, the network is informative if and only if G is connected and DG ≤ T , and

player k is visible if and only if G−k is connected and DG−k ≤ T . Since removing a node from

the network cannot connect a disconnected network, and can only increase social distances

so that dij(G−k) ≥ dij(G) ∀ i, j, k ∈ N , if G−k is connected and DG−k ≤ T , this implies

that G is connected and DG ≤ T : i.e. a player’s visibility implies the original network G is
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informative. When the network is informative, wij(G) > 0 ∀ i, j ∈ N , and so k is visible if

and only if he is not obstructive.

B.6 Proof of Remark 5.2

There are n!
2(n−2)! pairs in a network of n nodes, and if L is the number of visible nodes,

there are L!
2(L−2)! pairs where both partners are visible. In an informative tree network, all

nodes except the leaf nodes are obstructive, because leaf nodes are the only ones who would

not disconnect the network by their isolation. Nodes are defined as visible if they are not

obstructive in an informative network, so only the leaf nodes in a tree network are visible.

All nodes except the centre of the star are leaf nodes, and so the star has the maximum

number of visible nodes for any tree: L = n− 1.

C Additional results

C.1 A good reputation

In our framework, an alternative specification with a good signal, which was emitted when

one’s partner cooperated, could work as follows.

Period 3 For punishment to provide an incentive for cooperation, there might need to be

a parametric assumption that a player would only be rewarded for cooperation in the

first round if a good signal about them was received by their final-round partner. This

means that if a player received a good signal about their partner in the final round

they would they defect, and otherwise they would punish (exit). Hence (3.1) would no

longer hold, because we would want a player to exit against an unknown player. And

it would imply that some S-type players would be punished in equilibrium, because a

signal was not received by their partner, even though they had cooperated - in contrast

to our model with a bad signal, where only the B-types are punished.

Period 2 With a good signal, this would mean everyone had an incentive to pass on a signal

about themselves and about other players. This is because the reward for cooperation

(mutual defection) would only be possible if both partners received a good signal about

each other. This means there would be no obstruction. However, there would be an

incentive to fabricate false reports of one’s own cooperation (whether or not they were

true), to increase the likelihood that such a report would be received by one’s future
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partner. This could perhaps be overcome by using evidentiary information (Nava,

2016; Wolitzky, 2014), where fabrication is not possible.

Period 1 In the first round, incentives to cooperate would depend on the probability that a

good signal emitted by a player’s partner would reach his future partners, in the same

way as the current model — but without obstruction. However, because (3.1) would

not hold, players who could not cooperate would coordinate on the Nash equilibrium of

mutual exit, rather than mutual defection. Parameters would also have to be assumed

such that B-types did not have an incentive to cooperate in the first round because this

would give them the opportunity to ’steal everything’ in the final round — because if

they did, good signals would no longer be informative and cooperation would unravel.

This is an interesting thought experiment because it suggests that there may be differ-

ent welfare impacts of either good or bad signals in different networks and with different

parameters. On one hand, cooperation might be higher with a good signal because there is

no obstruction and so greater probabilities of information transmission. But on the other

hand, welfare might be lower because some S-types would be wrongly punished in period 3,

and because non-cooperating partners in period 1 could not defect, only exit.

C.2 Obstruction by subsets of nodes in different rounds of infor-

mation transmission

Let Xτ be the subset of nodes who obstruct a signal in round τ of information transmission.

Let X = {Xτ ⊂ N , 1 ≤ τ ≤ T} be the set of those subsets. Let lij(τ,G,X) be the number

of walks between i and j of length τ when the set of obstructing nodes is X.

To calculate this, recall that nodes only remember the information they receive in the

last round. So longer walks will not connect to other nodes, if the links it would traverse are

those which connect a node who is obstructing in the relevant round of information trans-

mission. So we have that, for example, lij(1,G,X) = [G−X1 ]ij where G−X1 is the network

G with those nodes in X1 disconnected. Then we have that lij(2,G,X) = [G−X2G−X1 ]ij
and lij(3,G,X) = [G−X3G−X2G−X1 ]ij, and so on. In general, lij(τ,G,X) = [

∏τ
τ=1 G−Xτ ]ij,

ensuring that the ordering of matrices G is preserved.
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C.3 Updated subjective probabilities

If i meets k in period 3 and has not heard any signal, there are two possibilities: either k is

an S-type; or k is a B-type but i has not heard about it. Player i will still defect against the

unknown player k due to Assumption 1. Now φji (k) is his updated belief that k is a B-type

player, given that he has heard no signal about him, that is:

φji (k) ≡ Pr[{k is B-type} | ρi(k) = 6©, ri = rj = 0, k, µ1
k /∈ {i, j}].

Let Qj
i (k) be the conditional probability that, if k is a B-type, an S-type player i who

matched with another S-type player j in period 1 will hear a signal about player k (see next

subsection).

Qj
i (k) ≡ Pr

[
ρi(k) = 1 | {k is B-type}, ri = rj = 0, k, µ1

k /∈ {i, j}
]
.

To find φji (k), we need the following expressions:

Pr
[
ρi(k) = 6© | {k is S-type}, ri = rj = 0, k, µ1

k /∈ {i, j}
]

= 1

Pr
[
ρi(k) = 6©∩ {k is S-type} | ri = rj = 0, k, µ1

k /∈ {i, j}
]

= 1− φ
Pr
[
ρi(k) = 6© | {k is B-type}, ri = rj = 0, k, µ1

k /∈ {i, j}
]

= 1−Qj
i (k)

Pr
[
ρi(k) = 6©∩ {k is B-type} | ri = rj = 0, k, µ1

k /∈ {i, j}
]

= φ(1−Qj
i (k)).

Using the final equation from this list and Bayes’ rule we have that

φji (k) = Pr[{k is B-type} | ρi(k) = 6©, ri = rj = 0, k, µ1
k /∈ {i, j}]

=
φ(1−Qj

i (k))

φ(1−Qj
i (k)) + 1− φ

=
φ(1−Qj

i (k))

1− φQj
i (k)

. (C.1)
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