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income redistributions and relate them to the network structure. Third, in the case of Cobb–
Douglas preferences, we establish a new link between two well-known concepts of the comparative
statics of income redistribution, the neutrality result and the transfer paradox. Collectively, our
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1 Introduction

Market outcomes provide scope for economic policy to raise welfare, and income redistribution is
often considered as the benchmark for welfare-motivated policies. For instance, the Second Welfare
Theorem for competitive equilibrium, where efficiency is always assured and welfare is only affected
in a normative sense through improvements to equity. Research on the private provision of public
goods has also focused on welfare implications. Important results by Bergstrom, Blume and Varian
(1986) (henceforth BBV) show, firstly, that the public good is under-provided relative to the
efficient level and, secondly, that income redistribution among contributors that leaves the set of
contributors unchanged is ‘neutral’. Neutrality means that contributors adjust their contributions to
exactly offset the transfer among contributors that leaves the set of contributors unchanged so that
there is no change in consumption.

This paper explores the pattern of welfare impacts due to income redistribution for the private
provision of public goods in networks. Public goods are often ‘local’ in the sense that consumers
only benefit from the provision of their direct neighbours. Examples include information acquisition,
liquidity in a banking network, and municipal amenities such as lighthouses or farming irrigation
systems. In a key contribution, Bramoullé and Kranton (2007) showed that the network context,
where local influences are heterogeneous among consumers, is a natural setting to examine the
private provision of public goods. Bramoullé, Kranton and D’Amours (2014) investigated the whole
range of strategic substitution and identified a threshold of impact related to the lowest eigenvalue
of the network. Below the threshold, the uniqueness and stability of a Nash equilibrium hold.
Beyond it, multiple Nash equilibria will in general exist, and stability holds only for corner equilibria.
Allouch (2015) extended this model to the non-linear case, with a condition on the normality of the
public good which follows BBV’s approach, and showed that neutrality no longer holds for income
redistribution in general networks. This result opens the door to policy interventions that could
improve welfare. Allouch (2017) first investigated the benchmark policy of income redistribution
between contributors, focusing on preferences that yield affine Engel curves1 and using a standard
utilitarian approach. Other recent and relevant contributions to the network literature include those
by: Galeotti, Goyal, Jackson, Vega-Redondo and Yariv (2010); Ghiglino and Goyal (2010); Elliott
and Golub (2015); Acemoglu, Malekian and Ozdaglar (2016); Bourlès, Bramoullé and Perez-Richet
(2017); Kinateder and Merlino (2017) and López-Pintado (2017).

Our main contributions are threefold. First, we find a property that is key to understanding the
impact of income redistribution. More specifically, we show that a transfer affects each consumer
only insofar as it affects the consumer’s neighbourhood, formed by herself and her neighbours.
That is, it is the aggregate transfer to the consumer’s neighbourhood, rather than the individual
transfer to the consumer, that affects consumption. Hence the policy implications of income
redistribution can be derived by focusing just on the classes of ‘policy-equivalent’ transfers: those
with identical corresponding neighbourhood transfers. Next we investigate neutral transfers in
general networks, which are policy-equivalent to the null transfer and hence represent the kernel of
policy constraints faced by the social planner.

1Of which Cobb–Douglas preferences is a special case.
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Secondly, given that income redistribution can affect consumption, we characterise
Pareto-improving income redistributions. We follow the policy reform literature in the tradition of
Dixit (1975), Guesnerie (1977), Weymark (1981), and Ahmad and Stern (1984), who typically aim
to design small feasible changes that will improve welfare, when the optimal outcome is not readily
available or requires a significant change in the state of the economy. We find two mutually
exclusive cases — either there is a Pareto-improving income redistribution or, if not, we can identify
the implicit welfare weights of the initial private provision equilibrium. In this context we identify a
class of networks where a Pareto improvement always exists for any profile of preferences of
consumers. This is very much in the spirit of the BBV neutrality result, which also holds for any
profile of preferences of consumers. Additionally, in the case of Cobb–Douglas preferences, we show
that the feasibility of Pareto-improving reform turns out to be readily interpreted and easily checked
from the network structure. As a consequence, our policy reform analysis leads to a succinct
characterisation of the welfare impact of income redistribution.

Thirdly, in the case of Cobb–Douglas preferences, we provide a link between two well-known, but
seemingly unrelated, concepts of the comparative statics of income redistribution, the neutrality
result and the transfer paradox (Leontief, 1936; Samuelson, 1952; Yano, 1983; Balasko, 2014). In
the case of a Pareto improvement, the utility level of the donors must move in the opposite
direction to their transfer, and this is called a weak transfer paradox. In contrast, a strong transfer
paradox occurs when the utility levels of both donors and recipients move in the opposite direction
to the transfer. In fact, by focusing on transfers that are also eigenvectors, our network approach to
welfare shows that the existence of a strong transfer paradox can be related to the neutrality result.
More specifically, we show that neutrality corresponds to the point of policy switch between
transfers where the utility levels of the donors and the recipients move in the same direction
(normal welfare impact), and transfers where the utility levels of the donors and the recipients
move in the opposite direction (paradoxical welfare impact).

This paper is the first to show the importance of the −1 eigenvalue to social and economic
outcomes, since our findings identify it as a condition for neutral transfers, Pareto improvement,
and the policy switch. In interpretation, the −1 eigenvalue is an indication of how consumers, via
their neighbourhood, absorb the impact of income redistribution, and hence of the welfare
implications. It is not used as a common measure of network analysis in any other fields, including
sociology, computer science, and physics. Given that the −1 eigenvalue provides a key to social and
economic outcomes, perhaps its relationship to the underlying network structure could usefully be
studied alongside classic network statistics such as the the highest, the second, and lately the
lowest eigenvalues.

Finally, aggregative games have been a subject of ongoing interest in economics, given their
valuable insights in the study of a variety of strategic interactions including public goods provision,
rent-seeking contests, and patent races. Our findings for public goods in networks highlight the
interplay between an aggregative structure of the game, whereby each agent’s payoff depends only
on his own action and the sum of his neighbours’ actions, and the underlying network structure of
the game. In this respect, we think our analysis could also be useful for the nascent literature on
aggregative network games; see, for example, Melo (2017) and Parise and Ozdaglar (2017).

The paper is structured as follows. Section 2 sets out the model and Section 3 investigates
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policy-equivalent transfers and neutrality. Section 4 investigates Pareto-improving transfers, Section
5 provides a new perspective on neutrality and the transfer paradox, and Section 6 discusses the
welfare implications of the −1 eigenvalue. Section 7 concludes the paper

2 The model

We consider a society comprising n consumers who occupy the nodes of a fixed network g of social
interactions. Let G = [gij ] denote the adjacency matrix of the network g, where gij = 1 indicates
that consumer i 6= j are neighbours and gij = 0 otherwise. The adjacency matrix of the network,
G, is symmetric with non-negative entries and therefore has a complete set of real eigenvalues (not
necessarily distinct), denoted by λmax(G) = λ1 ≥ λ2 ≥ . . . ≥ λn = λmin(G), where λmax(G) is
the largest eigenvalue and λmin(G) is the lowest eigenvalue of G. By the Perron–Frobenius
Theorem, it holds that λmax(G) ≥ −λmin(G) > 0.

Consumer i’s neighbours in the network g are given by Ni. The preferences of each consumer i are
represented by a twice continuously differentiable, strictly increasing, and strictly quasi-concave
utility function ui(xi, qi +Q−i), where xi is consumer i’s private good consumption, qi is consumer
i’s public good provision, and Q−i =

∑
j∈Ni

qj is the sum of public good provisions of consumer i’s
neighbours in the society. Furthermore, the public good can be produced from the private good via
a unit-linear production technology. That is, any non-negative quantity of the private good can be
converted into the same quantity of the public good. For simplicity, the prices of the private good
and the public good can be normalised to p = (px, pQ) = (1, 1). Each consumer i faces the utility
maximisation problem

max
xi,qi

ui(xi, qi +Q−i)

s.t. xi + qi = wi and qi ≥ 0,

where wi is his income (exogenously fixed). The utility maximisation problem can be represented
equivalently as

max
xi,Qi

ui(xi, Qi)

s.t. xi +Qi = wi +Q−i and Qi ≥ Q−i,

where consumer i chooses his (local) public good consumption, Qi = qi +Q−i. Let γi be the Engel
curve of consumer i. Then consumer i’s local public good demand depends on wi +Q−i, each
consumer’s ‘social wealth’ (Becker, 1974):

Qi = max{γi(wi +Q−i), Q−i},

or equivalently,
qi = Qi −Q−i = max{γi(wi +Q−i)−Q−i, 0}.

We will assume, throughout the paper, the following network-specific normality assumption, which
amounts to both the normality of the private good and a strong normality of the public good:
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Definition 2.1. Network normality. (Allouch, 2015) For each consumer i = 1, . . . , n, the Engel
curve γi is differentiable and it holds that 1 + 1

λmin(G) < γ′i(·) < 1.

Theorem 2.2. (Allouch, 2015) Assume network normality. Then there exists a unique Nash
equilibrium in the private provision of public goods on networks.

3 Income redistribution in networks

Now, we investigate the impact of a social planner’s intervention on the private provision of public
goods. The social planner aims to achieve socially optimal outcomes by drawing on income
redistribution as a policy instrument. Income redistribution takes the form of lump-sum transfers,
which are traditionally viewed as a benchmark for other policy instruments. In general, not all
consumers will be contributing to public goods. Therefore, at a Nash equilibrium, there will be
possibly several components of contributors. We will focus our analysis on just one component S of
contributors. For simplicity of notations, by passing to the subnetwork, we will assume S = N . Let
q∗ = (q∗1, . . . , q∗n) be the Nash equilibrium associated with w = (w1, . . . , wn) and let
t = (t1, . . . , tn) denote a budget-balanced income transfer, that is,

n∑
i=1

ti = 0,

where transfers could be a tax (ti < 0) or a subsidy (ti ≥ 0). Let qt = (qt1, . . . , qtn) be the Nash
equilibrium after an income transfer t, that is, the Nash equilibrium corresponding to the income
distribution w + t = (w1 + t1, . . . , wn + tn)T .

Like Warr (1983) and BBV, we first focus our analysis on income redistributions that leave the set
of contributors unchanged, referring to them as ‘relatively small’. Given a vector u, let
û = (I + G)u denote the corresponding neighbourhood vector.

3.1 Neighbourhood transfers and policy equivalence

Now we investigate transfers that lead to the same change in private and public good
consumptions. We say that two transfers t1 and t2 are policy-equivalent, if for each i, it holds that

(xt1
i , Q

t1
i ) = (xt2

i , Q
t2
i ).

Proposition 3.1. Two relatively small transfers t1 and t2 are policy-equivalent if and only if their
corresponding neighbourhood transfers are identical, that is, t̂1 = t̂2.

Proposition 3.1 shows that it is the neighbourhood transfer, rather than the transfer itself, that
determines the policy impact on consumers. That is, a transfer impacts each consumer’s
consumption of either the public or private good only insofar as it impacts his neighbourhood. As a
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consequence, policy implications of income redistribution can be derived from focusing just on the
classes of policy-equivalent transfers, rather than all transfers. That said, policy-equivalent
transfers, since they reduce the scope of income redistribution, also indicate the policy constraints
faced by the social planner due to the network structure. The following example illustrates
policy-equivalent transfers.

Example 1. Consider the line network with five consumers. Figure 1 shows two policy-equivalent
transfers t1 and t2 since they have identical corresponding neighbourhood transfers. It is worth
noting that the two transfers t1 and t2 seem unrelated since the consumers involved with transfer
t1 are not adjacent to consumers involved with transfer t2.

−1 1 0 0 0 0 0 0 1 −1

t1 t2

0 0 1 0 0

t̂1 = t̂2

Figure 1: Policy-equivalent transfers

3.2 Neutral transfers

An important class of policy-equivalent transfers, which represents the kernel of policy constraints
faced by the social planner, are neutral transfers. Neutral transfers are policy-equivalent to the null
transfer and therefore have no impact on consumers in terms of their consumption of either the
public or private good. By virtue of policy equivalence, neutral transfers are characterised by having
a null neighbourhood transfer.

Corollary 3.1. A relatively small transfer t is neutral if and only if t̂ = 0.

An example of network structures where neutral transfers always occur are those with a
neighbourhood homogeneous subset of consumers. We say a subset of consumers H is
neighbourhood homogeneous, if for any i, j in H, it holds that i ∪Ni = j ∪Nj . Observe that the
neighbourhood of each consumer i ∈ N either includes all consumers or no consumer in H. This
implies that any transfer among consumers in H is neutral since it induces a null corresponding
neighbourhood transfer. In particular, the neutrality result of BBV for pure public goods, or
equivalently for complete networks, holds since all subsets are neighbourhood homogeneous.

In general, neutral transfers occur in network structures both with and without a neighbourhood
homogeneous subset of consumers. We illustrate this in the following example.
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Example 2. Figure 2 shows a neutral transfer for a network with a neighbourhood homogeneous
subset of consumers. Meanwhile, Figure 3 shows a neutral transfer for a network without a
neighbourhood homogeneous subset of consumers.

0 0

1

−1

0 0 0 0

0

0

0 0

t3 t̂3

Figure 2: A network with a neighbourhood homogeneous subset

−1 1 0 −1 1 0 0 0 0 0

t4 t̂4

Figure 3: A network without a neighbourhood homogeneous subset

3.3 Dimension of neutral transfers

Neutral transfers not only have no impact on consumption, but also, by virtue of policy
equivalence, restrict the policy outcomes that income redistribution can achieve. A natural question
which follows is the dimension of neutral transfers in general networks. To answer this question, the
following characterisation of neutral transfers turns out to be useful.
Proposition 3.2. Neutral transfers are the budget-balanced eigenvectors to the −1 eigenvalue.

The link between the budget balance requirement of a transfer and the vector 1 highlights the role
of the concept of main eigenvalues in our analysis. A main eigenvalue is an eigenvalue that has an
eigenvector not orthogonal to the vector 1 (Cvetković, 1970).2 The distinct main eigenvalues of G
form the main part of the spectrum, denoted byM (Harary and Schwenk, 1979). Let k denote the
multiplicity of the −1 eigenvalue outside the main part of the spectrum. That is,

k =
{
ψG(−1)− 1 if − 1 ∈M,
ψG(−1) if − 1 /∈M,

2By the Perron–Frobenius Theorem, the maximum eigenvalue of G has an associated eigenvector with all its entries
positive and, therefore, is a main eigenvalue.
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where ψG(−1) denotes the multiplicity of the −1 eigenvalue in the spectrum of G.

Proposition 3.3. There are k linearly independent neutral transfers.

The multiplicity of the −1 eigenvalue outside the main part of the spectrum, k, captures the policy
constraints faced by the social planner due to the network structure. Roughly speaking, the higher
is k, the fewer policy outcomes that income redistribution can achieve. In particular, the neutrality
of BBV occurs as a limiting case, since only the complete network reaches the highest possible k of
n− 1. More generally, if the network has a neighbourhood homogeneous subset H, then a lower
bound of k is |H| − 1, which accounts for the number of linearly independent, binary (between two
consumers), and neutral transfers in H. Nonetheless, as we have shown above, k also accounts for
neutral transfers without a neighbourhood homogeneous subset of consumers.

4 Pareto-improving transfers

Given that income redistribution can affect consumption, let us further examine the potential
welfare impact. More specifically, we investigate whether it is possible to achieve a Pareto
improvement with income redistribution. We follow the policy reform literature in the tradition of
Dixit (1975), Guesnerie (1977), Weymark (1981), and Ahmad and Stern (1984) and focus our
analysis on local transfers, which induce infinitesimal income redistributions. The idea is that
implementing a Pareto-optimal outcome is typically unachievable because it requires a significant
change from the existing state of the economy. More realistic are local transfers that are
Pareto-improving and equilibrium-preserving. Let v∗ = (ui(x∗i , Q∗i ))i∈N denote the vector of
utilities of all consumers at the initial equilibrium, vt = (ui(xt

i , Q
t
i ))i∈N denote the vector of

utilities after local transfer t, and ∆v(t) = vt − v∗.

Proposition 4.1. There are two mutually exclusive possibilities, (a) and (b):

(a) There exists a Pareto-improving local transfer.

(b) There exists an r ∈ Rn++ for which the initial private provision equilibrium is welfare-optimal.
That is, it holds that r ·∆v(t) = 0 for any local transfer t.

Proposition 4.1 shows that either a local Pareto-improving redistribution can be found or the initial
private provision equilibrium is an optimum amongst the private provision equilibria achieved by
local income redistributions. In the case of no possible Pareto improvement, the r ∈ Rn++, also
known as Motzkin weights,3 represents the implicit welfare weights at the initial equilibrium.

Proposition 4.2. If −1 ∈M then there exists a Pareto improvement.

This proposition is very much in the spirit of the BBV neutrality, since it holds for any profile of
preferences. In interpretation, if −1 is a main eigenvalue, then a corresponding eigenvector is a

3The name Motzkin weights originates from the application of Motzkin’s Theorem of the Alternative to find Pareto-
improving income redistributions in Guesnerie (1977).
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−1

1 1

−1 −1

−1 0

0 0

0 0

0

s ŝ

Figure 4: A Pareto-improving tax and subsidy scheme

budget-unbalanced tax and subsidy scheme that is policy neutral since no consumer’s
neighbourhood is affected. In this regard, the social planner can use the tax and subsidy scheme to
create tax revenue which can be redistributed for Pareto improvement. The following example
illustrates this.

Example 3. Consider the network in Figure 4, with two core consumers and four periphery
consumers. We can observe that the tax and subsidy scheme s such that sp = −1 for periphery
consumers and sc = 1 for core consumers is budget unbalanced but policy neutral since its impact
is null in each consumer’s neighbourhood. Note that s is an eigenvector to the main eigenvalue −1.
Therefore, the social planner could use the tax and subsidy scheme s as follows: take 1 unit of
income from each of the four periphery consumers then subsidise the two core consumers with 1
unit of income each. This is policy neutral and creates a budget surplus of 2 units of income which
can be redistributed for Pareto improvement.

4.1 Cobb–Douglas preferences

In the case of Cobb–Douglas preferences we can further relate the feasibility of Pareto-improving
reform to the network structure. Note that since the indirect utility for Cobb–Douglas preferences
is linear, we can simply extend our result in Proposition 4.1 for local transfers to relatively small
transfers that leave the set of contributors unchanged.

Proposition 4.3. Assume Cobb–Douglas preferences. Then there are two mutually exclusive
possibilities, (a) and (b):

(a) There exists a Pareto-improving relatively small transfer.

(b) There exists an r ∈ Rn++ such that r̂ = 1 + ad, where d denotes degree.

9



1+2a
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1+2a
3

1+2a
3

1+2a
3

(a) A regular network

a

1

a

(b) A star network

Figure 5: Motzkin weights

In the case of Cobb–Douglas preferences, condition (b) can be interpreted as follows. For each
consumer i, the welfare impact in his neighbourhood of an additional unit of tax and subsidy
1 + adi is equal to the social welfare benefit in his neighbourhood r̂i. This rules out the possibility
that the social planner can generate tax revenues that can be redistributed for Pareto improvement.
Condition (b) provides a simple method based on the network structure to check whether
Pareto-improving transfers exist or not.

Corollary 4.1. Assume Cobb–Douglas preferences. If the network is regular or star, then there
exists no Pareto improvement.

Indeed, it is easy to check condition (b) holds in the two canonical network structures, regular and
star. For a regular network, consider r = 1+ad

1+d 1, where d is each consumer’s degree. For a star
network, consider r such that rc = 1 for the central consumer and rp = a for the periphery
consumers. The following example illustrates this.

Example 4. Consider the regular network with four consumers in Figure 5a. We can observe that
the vector r = (1+2a

3 , 1+2a
3 , 1+2a

3 , 1+2a
3 ) satisfies condition (b). Consider the star network with three

consumers in Figure 5b. Let us designate the central consumer as 1 and the two periphery
consumers as 2 and 3. We can observe that the vector r = (1, a, a) satisfies condition (b).

5 Neutrality and the strong transfer paradox

Now we show that a network approach to welfare, which accounts for heterogeneity of local
interactions, provides a link between two key concepts of the comparative statics of income
redistribution, the neutrality result and the transfer paradox. Indeed, observe that when a
Pareto-improving income redistribution exists, it holds that the donors’ utility level must move in
the opposite direction to the transfer. In fact, this is an example of a weak transfer paradox. On
the other hand, a strong transfer paradox corresponds to the case where the utility levels of both
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the donors and recipients move in the opposite direction to the transfer — that is, those who give
are better off and those who receive are worse off.

The possibility of a Pareto improvement and transfer paradox may seem surprising. As shown in the
utility maximisation, the change in utility of each consumer is an increasing function of their social
wealth, wi +Q−i. So there will be two effects on a consumer’s utility after a transfer. As a direct
effect, the endowment wi changes by ti. There will also be an indirect effect on the consumer’s
social wealth because his neighbours’ public good provision Q−i changes in the new equilibrium.
Note that the direct effect always works in the direction of the normal or non-paradoxical outcome
and that a quite subtle change in the neighbours’ public good provision is needed to generate the
paradoxes. In the following, we provide an example of a strong transfer paradox.

Example 5. Consider again the star network with three consumers in Figure 5b. Let us designate
the central consumer as 1 and the two periphery consumers as 2 and 3. Consider a transfer
t = (t1, t2, t3). Since the transfer is budget-balanced, let t1 = −t2 − t3. Then we can write the
utility changes of the transfer as∆v1(t)

∆v2(t)
∆v3(t)

 = κs

 a(t2 + t3)
−a2t2 − (1− a2)t3
−a2t3 − (1− a2)t2

 ,
where κs > 0. Observe that if transfers to the periphery consumers are positive, then this increases
the utility of the central consumer and decreases the utility of the periphery consumers. For each
consumer, transfers to themselves have a negative effect on their utility (for consumer 1, this effect
can be written as −at1). In fact, this is a strong transfer paradox because utility levels move in the
opposite direction to the transfer for all consumers — those who give and receive transfers.

Now we show that our welfare analysis, including the existence of a strong transfer paradox,
provides a new perspective on the neutrality result. To do so, we will focus our attention on the
special case where the transfers are also eigenvectors,4 given their clear welfare impact.

Proposition 5.1. Assume Cobb–Douglas preferences. If the transfer t is an eigenvector to the
eigenvalue λ, then, for some κλ > 0, it holds that

∆v(t) = κλ (λ+ 1) t = κλ t̂.

Proposition 5.1 shows that if the transfer is also an eigenvector, then its welfare impact is
proportional to the corresponding neighbourhood transfer. In addition, it holds that: (i) if the
eigenvalue is greater than −1, then the utility levels of both the donors and the recipients move in
the same direction as the transfer, which corresponds to the normal welfare impact of the transfer;
(ii) if the eigenvalue is equal to −1, the welfare impact is null, which corresponds to neutrality; and
(iii) if the eigenvalue is smaller than −1, then the utility levels of both the donors and the
recipients move in the opposite direction to the transfer, which corresponds to the paradoxical
welfare impact of the transfer (a strong transfer paradox). Therefore, the welfare impact changes

4From the definition of main eigenvalues, it can be checked that there are n − |M| linearly independent transfers
that are also eigenvectors.
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from one direction to the other depending on the eigenvalue, and the point at which the direction
switches, −1, is the point of policy neutrality. In interpretation, the welfare impact can be thought
of as a continuous policy function that changes sign, so, at some point it must equal zero, which is
the point of policy neutrality. The following example illustrates a network structure where the
policy switch occurs.

Example 6. Consider the network shown in Figure 6. Since the transfers we will consider are also
eigenvectors, in view of Proposition 5.1, we can measure the welfare impact ∆v(t) of the transfer t
by the corresponding neighbourhood transfers t̂. The welfare impact of the transfer
t1 = (1, 1, 0, 0,−1,−1) is t̂1 = t1, which is a normal welfare impact. The welfare impact of the
transfer t2 = (0, 0, 1,−1, 0, 0) is t̂2 = 0, which is neutral. Finally, the welfare impact of the transfer
t3 = (1,−1, 0, 0, 1,−1) is t̂3 = −t3, which is a paradoxical welfare impact (strong transfer
paradox).

Proposition 5.2. Assume Cobb–Douglas preferences. If the network is regular but not complete,
then there exists a transfer — that is also an eigenvector — with a normal welfare impact and a
transfer — that is also an eigenvector— with paradoxical welfare impact.

Corollary 5.1. The policy switch always occurs in regular but not complete networks.

Example 7. Consider again the regular network with four consumers in Figure 5a. Figure 7 shows
a transfer with a normal welfare impact. Meanwhile, Figure 8 shows a transfer with a paradoxical
welfare impact.

6 Welfare implications of the −1 eigenvalue

We have identified the −1 eigenvalue of the network as the condition and a measure for neutral
transfers, a sufficient condition for Pareto improvement, and a policy switch point. In addition,
given any profile of preferences, its eigenvectors are either neutral transfers with no impact on
consumption, if budget-balanced, or tax and subsidy schemes to create tax revenue which can be
redistributed for Pareto improvement, if budget-unbalanced. The −1 eigenvalue is also an
indication of how consumers, via their neighbourhood, act on, cancel, or counteract income
redistribution. Hence the importance and the policy relevance of the −1 eigenvalue.

We are not aware of any mathematical or graph theory research on the relationship between the
network structure and the −1 eigenvalue — with the exception of Aouchiche, Caporossi and
Hansen (2013), which provides an example of networks having a neighbourhood homogeneous
subset of two consumers. The −1 eigenvalue is not a common measure of network analysis in any
other fields, including sociology, computer science, and physics. Looking at tables of networks of at
most five nodes in Cvetković, Rowlinson and Simić (1997) and of six nodes in Cvetković and Petrić
(1984), we notice that the −1 eigenvalue does occur frequently. More precisely, it occurs in more
than half of the listed networks, sometimes with multiplicity. In view of the heterogeneity of
network structures of at most six nodes, we conjecture that this pattern is not specific to them and
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Normal welfare impact (λ3 = 0)

−1

1 1

−1

0 0

−1

1 1

−1

0 0

t1 t̂1

Neutral welfare impact (λ4 = −1)

0

0 0

0

1 −1

0

0 0

0

0 0

t2 t̂2

Paradoxical welfare impact (λ6 = −2)

−1

1 −1

1

0 0

1

−1 1

−1

0 0

t3 t̂3

Figure 6: A network with six consumers13



0

−1 0

1 0

−1 0

1

t1 t̂1

Figure 7: Normal welfare impact

1

−1 1

−1 −1

1 −1

1

t2 t̂2

Figure 8: Paradoxical welfare impact

is likely to occur in larger networks. Given the policy relevance of the −1 eigenvalue, perhaps its
presence in the spectrum could be usefully studied alongside other important network measures.

7 Conclusion

The welfare implications of income redistribution have featured prominently in several important
strands of the literature. In this paper, we have shown that a network approach to welfare, which
accounts for heterogeneity of local interactions, enables us not only to derive new results and
insights on the impact of income redistribution and policy reform but also to link two prominent
literatures: on the neutrality result — and its prediction of complete crowding-out of private
provision of public goods; and on the transfer paradox — and its close association with
international trade and development. We have also shown that given a network structure, its
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eigenvalues provide us with a useful policy diagnostic: they tell us whether income redistribution is
welfare improving or not. As a consequence, in view of the large body of empirical and
experimental research in the above mentioned literatures, our findings can provide clear testable
predictions for many applications including empirical and experimental work.
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A Proofs

Proof of Proposition 3.1 Given two relatively small transfers t1 and t2, from Allouch (2015) we
have that

qt1 − qt1 = (I + AG)−1(I−A)(t1 − t2),

where A = diag(1− γ′i(βi))i∈N for some real numbers (βi)i∈N .

We can now calculate the changes in private and public good consumption from the above. We
know that xt1 − xt2 + qt1 − qt2 = t1 − t2, so

xt1 − xt2 = t1 − t2 − (qt1 − qt2) = [I− (I + AG)−1(I−A)](t1 − t2)
= (I + AG)−1[(I + AG)− (I−A)](t1 − t2)
= (I + AG)−1A(I + G)(t1 − t2).

We also know that Qt1 −Qt2 = (I + G)(qt1 − qt2), so we have that

Qt1 −Qt2 = (I + G)(qt1 − qt2) = (I + G)(I + AG)−1(I−A)(t1 − t2)
= (I + G)(I + AG)−1[(I + AG)− (AG + A)](t1 − t2)
= [A−1 − I](I + AG)−1A(I + G)(t1 − t2).

Therefore, it holds that (xt1
i , Q

t1
i ) = (xt2

i , Q
t2
i ), for each i, if and only if (I + G)(t1 − t2) = 0,

which is equivalent to t̂1 = t̂2.

Proof of Proposition 3.2 Observe that t being a transfer is equivalent to budget balance.
Moreover, t is neutral is equivalent to t̂ = 0. This is also equivalent to (I + G)t = 0, which is also
equivalent to t being an eigenvector to the −1 eigenvalue.

Proof of Proposition 3.3 Following from the definition of main eigenvalues, if −1 is a main
eigenvalue, we can choose the corresponding eigenvectors in such a way that, at most, one of them
is not orthogonal to 1.

Proof of Proposition 4.1 Since we normalised prices to (1, 1) and assumed all consumers are
contributors, without loss of generality it holds that

∇xu =
(∂ui
∂xi

)
i∈N

= ∇Qu =
( ∂ui
∂Qi

)
i∈N

= 1.

Next, we can use Proposition 3.1 and a Taylor approximation such that

∆v(t) ≈ ∇xu(xt
i − x∗i ) +∇Qu(Qt

i −Q∗i )
= (I + AG)−1A(I + G)t + [A−1 − I](I + AG)−1A(I + G)t
= A−1(I + AG)−1A(I + G)t.
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Let V be the space of utility changes that can be achieved with local transfers:

V = {∆v(t) ∈ Rn | ∆v(t) = A−1(I + AG)−1A(I + G)t for a local transfer t}.

Therefore, given V is a linear subspace, it follows from Corollary 3′ of Ben-Israel (1964) that there
are two mutually exclusive possibilities, (a) and (b):

(a) V ∩ Rn+ 6= {0} ⇐⇒ V⊥ ∩ Rn++ = ∅.
(b) V ∩ Rn+ = {0} ⇐⇒ V⊥ ∩ Rn++ 6= ∅.

If (a) then there exist weakly Pareto-improving transfers in the subspace V.

If (b) then weakly Pareto-improving transfers do not exist, and V⊥ contains strictly positive r such
that r ·∆v(t) = 0 for any transfer t and thereby the initial private provision equilibrium is
welfare-optimal.

Proof of Proposition 4.2 Suppose there exists no Pareto improvement. Then there exists a vector
(of Motzkin weights) r ∈ Rn++ such that

rA−1(I + AG)−1A(I + G) = 1.

Let s be an eigenvector to the −1 eigenvalue such that 1 · s 6= 0. Then it holds that

0 = rA−1(I + AG)−1A(I + G)s = 1 · s 6= 0,

which is a contradiction.

Proof of Proposition 4.3 Since the indirect utility for Cobb–Douglas preferences is linear, we can
simply extend our analysis to relatively small transfers and the Taylor approximation in the proof of
Proposition 4.1 holds exactly. Indeed, it follows that condition (b) holds in the case of
Cobb–Douglas preferences if and only if there exists a vector (of Motzkin weights) r ∈ Rn++ such
that r(I + aG)−1(I + G) = 1, which is equivalent to (I + aG)−1(I + G)r = 1, since all matrices
are symmetric. This is equivalent to (I + G)r = 1(I + aG), which is also equivalent to r̂ = 1 + ad.

Proof of Proposition 5.1 From the proof of Proposition 4.1 it follows that

∆v(t) = (I + aG)−1(I + G)t.

Therefore, if the transfer t is an eigenvector to the eigenvalue λ, then it holds that

∆v(t) = κλ (λ+ 1) t = κλ t̂,

where κλ = 1
1+aλ . Having assumed network normality, we note that this is equivalent to

a ∈]0,− 1
λmin(G) [ in the Cobb–Douglas preferences case, which ensures that κλ is positive.
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Proof of Proposition 5.2 If the network is regular, then it has exactly one main eigenvalue, which
is the highest eigenvalue. This implies that the eigenvectors to all eigenvalues except the highest
eigenvalue are transfers. Complete networks are the only networks such that the lowest eigenvalue
is not below −1 and the second eigenvalue is not above −1. Therefore the eigenvector to the
second eigenvalue is a transfer with a normal welfare impact and the eigenvector to the lowest
eigenvalue is a transfer with paradoxical welfare impact (strong transfer paradox).
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